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Cognitive Radar 
(STO-TR-SET-227) 

Executive Summary 
For NATO’s military and peacekeeping operations radar is used in virtually all applications, including air 
defence, weapon locating, surveillance, reconnaissance and target acquisition. Radar systems are able to 
function during day and night, have relative immunity to weather, and can even provide over the horizon 
coverage. They can provide high-resolution imagery, detect, localize and track targets at all ranges. The 
emerging theme of cognitive radar sensing has roots in mammalian cognition. It embraces both the 
“perception-action cycle” and the more explicit generation and exploitation of memories. Applying the ideas 
of cognition to radar has the potential to usher in a new era of sensing, not just improving the performance of 
existing radar systems but opening up whole new capability areas. Cognition is ubiquitous and can be 
applied to all radar systems. Potential benefits include sensitivity enhancements to improved tracking, 
sensing for autonomous guidance and navigation, and many more. 

The objectives of this Task Group have been to develop and conduct experiments and theoretical 
investigations to illustrate the benefits and challenges of enabling cognition-based capabilities in radar 
systems. Several of the participating groups have conducted experiments on cognitive, and the 
co-operation afforded by the task group has allowed ideas, experiences and results to be shared. At the 
outset of this study there had been little or no experimental work to demonstrate cognitive behaviour in a 
practical way. The work has been able to demonstrate true cognitive behaviour in a radar sensor. However, 
the work has also highlighted the difficulty of experimental work on cognitive sensing, and there is much 
more to be done. 

The work has reviewed the different concepts and definitions in the literature and highlighted that a true 
cognitive system should incorporate learning, so that faced with a dynamically-changing target scene it will 
do better a second time. Nevertheless, some workers argue that the term ‘fully adaptive radar’ is more 
appropriate, since ‘cognitive radar’ almost promises too much. 

The experimental work of the task group will undoubtedly continue beyond the time limit of this Task 
Group, since strong links have been forged. It is recommended that a further NATO Task Group be initiated 
on the subject of Cognitive Radar Networks. The radars of the future are likely to be distributed, intelligent 
and spectrally-efficient, so the extension of cognitive techniques to distributed sensing is a natural way 
forward. However, the means of resource management of a distributed network of this kind (and, indeed, the 
Position, Navigation and Timing (PNT) – especially in a GPS-denied environment, and the means of 
exchanging information between the nodes of such a network) still need to be fully understood and 
developed. The experimental work that has been undertaken in this Task Group can be extended to 
distributed sensing networks. 
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Radar cognitif 
(STO-TR-SET-227) 

Synthèse 
Les opérations militaires et de maintien de la paix de l’OTAN utilisent théoriquement des radars dans toutes 
leurs applications, ce qui inclut la défense aérienne, la localisation des armes, la surveillance, 
la reconnaissance et l’acquisition d’objectifs. Les systèmes radars sont capables de fonctionner de jour 
comme de nuit, sont relativement immunisés contre les conditions météorologiques et peuvent même assurer 
une couverture au-delà de l’horizon. Ils peuvent fournir une imagerie à haute résolution, détecter, localiser 
et suivre les objectifs à toutes les distances. Le thème émergent de la détection par radar cognitif s’enracine 
dans la cognition des mammifères. Il englobe à la fois le « cycle de perception-action » et la production 
et l’exploitation plus explicite de souvenirs. L’application des idées de cognition au radar pourrait inaugurer 
une nouvelle ère de la détection, non seulement en améliorant les performances des systèmes radars 
existants, mais en ouvrant de tout nouveaux domaines de capacité. La cognition est omniprésente et peut être 
appliquée à tous les systèmes radars. Les avantages potentiels sont notamment l’amélioration du suivi 
par le renforcement de la sensibilité et la détection pour le guidage et la navigation autonomes, parmi 
tant d’autres. 

Les objectifs de ce groupe de travail étaient d’élaborer et de mener des expériences et des investigations 
théoriques pour illustrer les avantages et les défis de la mise en place de capacités fondées sur la cognition 
dans les systèmes radars. Plusieurs groupes participants ont réalisé des expériences sur la cognition ; 
la coopération offerte par le groupe de travail a permis le partage des idées, des expériences et des résultats. 
Au début de cette étude, il n’existait pas ou peu de travaux expérimentaux pour démontrer le comportement 
cognitif en pratique. Les travaux réalisés ont fait la démonstration du comportement cognitif réel 
d’un capteur radar. Cependant, ils ont également mis en lumière la difficulté du travail expérimental sur 
la détection cognitive et il reste beaucoup à faire. 

Les travaux ont passé en revue les différents concepts et définitions de la littérature et souligné qu’un 
véritable système cognitif devait incorporer l’apprentissage, afin que, confronté à une scène d’intérêt qui 
change dynamiquement, il fasse mieux la deuxième fois. Toutefois, certains chercheurs avancent 
que l’expression « radar entièrement adaptatif » est plus appropriée, car l’expression « radar cognitif » 
est presque trop prometteuse. 

Les expériences du groupe de travail se poursuivront sans aucun doute après la fin de ce groupe de travail, 
car des liens solides ont été forgés. Il est recommandé de créer un autre groupe de travail de l’OTAN au sujet 
des réseaux de radars cognitifs. Les radars du futur seront probablement répartis, intelligents et efficaces sur 
le plan du spectre, de sorte que l’élargissement des techniques cognitives à la détection répartie va de soi. 
Néanmoins, il faut encore comprendre en détail et développer les moyens de gestion des ressources d’un 
réseau réparti de ce type et, en réalité, le positionnement, la navigation et la référence temporelle (PNT) – 
notamment dans un environnement où le GPS est bloqué – ainsi que les moyens d’échange d’informations 
entre les nœuds d’un tel réseau. Les expériences entreprises dans ce groupe de travail peuvent être étendues 
aux réseaux de détection répartis. 
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Chapter 1 – CONTEXT AND DEFINITIONS 

1.1 WHAT IS COGNITION? 

In the literature, cognitive and adaptive concepts are used interchangeably because the definition of cognitive 
concept is not clearly made. Therefore, before evaluating the subject of cognitive radars, it is important to 
clarify the cognitive concept. There exist some prominent features for the radars to be considered cognitive:  

1) Cognitive radars: 

a) Can learn and react differently in the same environment and clutter conditions; 

b) Can search the parameter set for better performance, and 

c) Can measure the effectiveness of radar processes with selected parameters,  

2) Cognitive radars can determine how the targets/environment will behave in a future time period with 
the knowledge acquired from the targets/environment, and choose optimum parameter set accordingly.  

3) Cognitive radars can update the state space models that are used for estimation. 

4) The success criteria of cognitive radars are more abstract, and cognitive radars can make decisions 
based on top-level criteria such as mission success rather than instant performance improvements.  

1.2 ADAPTIVE FEATURES OF MODERN RADAR SYSTEMS 

Modern radar systems can adjust the waveform parameters such as frequency, pulse width, pulse 
compression code, PRI and number of pulses using digital signal generators. Moreover, the radar systems 
that have phased array antenna structures can adjust the transmit and receive antenna patterns. In order for 
these features to be considered adaptive, the environment must be evaluated, and the waveform parameters 
must be selected by the radar according to this evaluation. In modern radars, the waveform parameters  
of track beams are determined adaptively depending on the kinematics and characteristics of the tracked 
targets. In multi-function radars, radar transmit times and the priority between search or track beams are 
determined adaptively according to the environmental conditions and target characteristics.  

In addition to the beam properties, adaptive properties are used extensively in signal processing and tracking 
algorithms. In modern radar systems, tracking algorithms are capable of selecting models according to target 
kinematics. CFAR algorithms at the signal processing level can determine threshold levels adaptively based 
on measured noise characteristics. Algorithms that prevent the radar from false trace initiation by using 
information from road maps can be described as adaptive. Radars with multi-channel signal processing 
feature can be implemented with Space Time Adaptive Processing. In this way, the characteristics of the 
clutter and interference signals are estimated, and adaptive filtering is performed in Space Time. 

1.3 THE IMPORTANCE OF COGNITION IN RADARS 

When considering the applicability and necessity of cognitive abilities in radars, one of the most important 
questions is the possibility that the radar can adapt to its environment with the radar function. For example, 
waveform parameter change in the middle of imaging process for a SAR radar is not feasible, but adaptive 
operations can be utilized during target tracking phase. For each radar and each defined radar function, this 
evaluation is required. 

Cognitive algorithms have high applicability for tracking radars where target data can be collected 
continuously. It is observed that adaptive capabilities are used extensively during the tracking function of 
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modern radars both in determining the waveform parameters and in data processing algorithms. The target 
range and velocity information enable the use of adaptive capabilities, such as the adjustment of the 
waveform parameters; such as PRI and pulse width, of the transmitted waveform as well as the selection  
of the pulse compression filters and the utilization of signal processing algorithms to reduce the range 
migration effects. 

Cognitive abilities are important for all radars operating on the border and providing high added value for 
task performance. These radars have the best performance in situations where the environment can change 
very quickly, and the response times are too short.  

The very short response time criterion is also applicable to multi-function radars and radars on combat 
platforms. The timeframe for the planning of the radar beams under conditions where a large number of 
targets are simultaneously monitored, and a wide search space is covered is far below the decision and 
response time of the people. For combat platforms, especially the aerial platforms, the location of the targets 
in the background of clutter, and the positions of the targets relative to each other change very quickly. It will 
not be possible for the radar operator to adjust the radar parameters in accordance with this rapid change. 
Under these conditions, cognitive abilities become important for all radars that are expected to operate  
in these conditions. 

1.4 OBJECTIVES AND METHODOLOGY 

For NATO’s military and peacekeeping operations radar is used in virtually all applications, including air 
defence, weapon locating, surveillance, Reconnaissance and Target Acquisition (RSTA), etc. Radar systems 
are able to function during day and night, have relative immunity to weather, and can even provide over the 
horizon coverage. They can provide high-resolution imagery, detect, localize and track targets at all ranges. 
The emerging theme of cognitive radar sensing has roots in mammalian cognition. It embraces both the 
“perception-action cycle” and the more explicit generation and exploitation of memories. Applying the ideas 
of cognition to radar has the potential to usher in a new era of sensing, not just improving the performance  
of existing radar systems but opening up whole new capability areas. Cognition is ubiquitous and can be 
applied to all radar systems. Potential benefits include sensitivity enhancements to improved tracking, 
sensing for autonomous guidance and navigation, and many more. As a continuation of similar effort, this 
activity would also leverage the technical relationships and technical accomplishments of the SET-179  
and SET-182 RTGs on Waveform Diversity and Radar Spectrum, respectively. 

The objectives were stated in the TAP to be:’ to develop and conduct experiments and theoretical 
investigations to illustrate the benefits and challenges of enabling cognition-based capabilities in radar 
systems. Specifically, bio-inspired and bio-mimetic approaches borrowed from nature will be leveraged 
along with memory-based learning and control paradigms. The overarching theme will be upon 
incorporating greater autonomous decision-making and feedback-controlled adaptivity into the sensor’. 

The topics to be addressed were listed in the TAP as: 

• Theoretical concepts/models for cognitive radar sensing; 

• Intelligent and adaptive waveform design; 

• Adaptive feedback for enhanced detection and tracking; 

• Spectrum-agile and spatially-distributed cognitive sensing; 

• Cognitive concepts for scene perception and target recognition; 

• The role of knowledge and memory in cognitive radar sensing; 
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• Autonomous decision-making in advanced radar systems; 

• Bio-inspired/bio-mimetic sensing; and 

• Transmitter/waveform co-design and reconfigurable microwave systems. 

The methodology adopted was to construct a matrix of these topics against the list of participants, with  
a leader identified for each topic, and with the intention that each topic should form a chapter in this report. 
As the work progressed, some refinement was made to the matrix to reduce the number of topics to six, but 
the same essential methodology was followed. 

1.5 REPORT STRUCTURE 

The structure of this report follows the methodology outlined above, so that each chapter of the body of the 
report covers one of the six topics. Finally, Chapter 9 draws conclusions and makes some recommendations. 

References are listed in Chapter 10. Annex A lists the locations and dates of the meetings of the group. 
Annex B provides a list of the outputs of the group. 
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Chapter 2 – COGNITIVE PROCESSES 

2.1 INTRODUCTION 

There exist a number of definitions of cognitive processes with standpoints in different disciplines, ranging 
from cognitive psychology to neuroscience. Some neuroscientists have taken a low-level Hebbian view 
based on the functions of connected neurons [1], whereas cognitive psychologists have taken more of 
a systems view of the brain and its cognitive processes [2]. There has been some disagreement between 
the fields of cognitive neuroscience and cognitive psychology on issues, but the cognitive processes used in 
both disciplines have been remarkably similar. The following sections will look into definitions of cognitive 
processes and examine the impact of cognitive science. 

2.2 DEFINITIONS OF COGNITIVE PROCESSES 

Although the definition of cognitive processes can vary, standard texts on cognitive psychology [2], [3] 
all describe very similar cognitive processes, which are listed in Table 2-1. Although some of these 
processes are to an extent present in existing radar systems, developing a radar system that possesses all 
of these cognitive processes is a highly challenging task, which may not even be desirable. 

Table 2-1: Cognitive Processes Common to Most Definitions. 

Perceptual Memory Language Thinking 

Perception generation Long-term memory Concepts and categorisation Problem solving 

Attention Working memory Language processing Reasoning 

Recognition Learning Language production Decision making and 
judgement 

Language comprehension Anticipation 

2.2.1 Learning 
Learning is the process of acquiring new knowledge on the environment, which is used to enhance 
perception generation, as well as to make well informed decisions and execute well informed actions. 
The huge significance of the learning process for humans is evident from the long learning period between 
birth and cognitive maturity.  

The relevance of learning for cognitive radar can be seen, for example, in matched illumination, where it is 
necessary to learn a model of the radar channel in order to control the degrees of freedom for the transmit 
waveform and the receiver filter. Generally, all cognitive radar methods utilise some models, either for 
perception generation or for action selection. However, many of the techniques, such as the QoS 
optimisation methods, utilise fixed performance models that are not learnt based on the observed data 
obtained while the radar is operational. Also, the time duration over which acquired knowledge is exploited 
is presently very short. Exploiting knowledge that has been acquired by learning over extended time periods, 
potentially the entire lifetime of the radar system, is a defining feature for a cognitive radar system. 
Fortunately, the field of machine learning has seen great advances in the last decade, which can certainly 
be transitioned into the radar domain. 
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2.2.2 Problem Solving 
The process of problem solving is critical to cognition and it is clear that humans and animals continuously 
face problems that must be solved. An insightful definition of a problem is given by Duncker and 
Braisby [2], [4]: 

a problem exists when a living organism has a goal but does not know how this goal is to be 
reached. 

From this definition, it is clear that the goal is crucial to the process of problem solving, and effective 
problem solving must lead to goal-directed behavior. 

Conventionally, at design time, a radar system has a specific performance specification for a limited number 
of situations, which leads to a fixed configuration during operation. Consequently, the radar performance and 
effectiveness vary depending on the actual current situation and the specific mission requirements 
respectively. Mission requirements can be for example, protection of the radar platform and interception of 
hostile platforms. In contrast, a problem solving cognitive radar has the goal of satisfying the mission 
requirements by reconfiguring to alter the radar behavior based on everything that is known about the current 
situation. Therefore, it must generate waveforms and extract information that is linked to higher level 
mission goals and objectives in order to generate robust, stable performance in unexpected (or previously 
unspecified) situations. Traditional approaches formulate objective functions based on lower level 
performance criteria, such as the signal-to-interference ratio, track estimation error or information 
production. It is then implicitly assumed that optimising these lower level criteria aggregate to a successful 
mission. However, a successful mission may not be achieved as the true goal is not explicitly considered. 

2.2.3 Concepts and Categories 
A concept is an internal idea that applies to a category of things, enabling sets of objects to be sorted into 
categories. Categorising according to a concept is a key human cognitive process that enables humans to 
respond to objects depending on category instead of the unique object itself. Semantic memory stores known 
relationships between concepts, for example it is known that ships belong on water. The process of human 
categorisation and hence concept definition is very complex, with a variety of theories [3] that are not yet 
able to completely explain the process. 

The cognitive process of categorisation based on concepts may sound abstract, however, it bears a striking 
resemblance to higher level information fusions systems and situation assessment methods. Situation 
assessment characterises the relations and patterns between objects that are perceived in the current situation. 
Then, the relations that are stored in semantic memory are used to reason about unobservable properties 
of the situation. The cognitive process of categorisation and reasoning is often described in the literature on 
higher level information fusion [5], but rarely discussed in the context of a cognitive radar. This could 
be because situation assessment is not typically seen as a radar capability. 

2.2.4 Language 
Language processing, language comprehension and language production are also identified as cognitive 
process in Table 2-1. The language processes draw upon many of the cognitive process already described, 
such as memory, concepts and reasoning. For a cognitive radar system, it is necessary for the system 
to communicate effectively with the operator through the Human Machine Interface (HMI). Not only must 
the operator be able to effectively communicate objectives and requirements, the radar system must provide 
the necessary information to justify the decisions that the radar system takes, otherwise the operator will not 
trust the radar. Therefore, cognitive radar also creates new challenges for developing effective HMIs. 

In addition to the operator, it is desirable for the radar system to communicate with other sensor systems or 
platforms. Networks of sensor systems offer many benefits in terms of robustness against failures as well as 
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improved performance resulting from complementary sensing characteristics or target perspectives. 
Developing networked sensor systems is currently a large and evolving area of research. As communication 
is a crucial task for a cognitive radar system, the development of language processes (language processing, 
language comprehension and language production) is an open challenge.  

2.2.5 Reasoning 
Reasoning is the process of inferring a conclusion based on premises, by following logical laws. Reasoning 
is present in Bayesian target tracking, as the target state is inferred from noisy measurements, potentially also 
using context or negative information. However, reasoning can be extended to the higher situation and 
mission levels, where categorisation plays a crucial role. For example, when someone drives a previously 
unfamiliar car, although nothing is known about the car, it is possible to reason that the car has brakes due to 
the person’s concept of a car. Likewise, a radar can reason about the current situation or mission, based  
on previously experienced situations or missions. Reasoning is currently rarely mentioned in the context  
of cognitive radar but is a key component of existing situational assessment methods, which can be applied 
to radar problems. 

2.2.6 Decision Making and Judgement 
Current radar management methods perform a basic level of decision making, such as selecting the 
measurement time or waveform. However, radar management is relatively underdeveloped in comparison to 
adaptive processing at the receiver. Therefore, a challenge for cognitive radar must be to advance the 
decision-making processes applied in radar management. Interestingly, the study of human decision making 
indicates that humans are prone to making irrational or non-expectation maximising decisions, which result 
from cognitive biases. Two from many possible examples of cognitive biases are: 

• Bandwagon Effect – The number of believers of a belief or idea influences the adoption of the belief 
or idea by others, and 

• Neglecting Probability Bias – Tendency to disregard probability when making decisions, leading  
to a higher valuation of low probability events and a lower valuation of high probability events. 

These cognitive biases indicate that humans utilise a variety of learnt heuristics, as it is more important  
to rapidly reach a decision than to perform an exact but very computational and time intensive assessment. 
This is also a critical consideration for cognitive radar: although improved decision making algorithms are 
required, they must be capable of rapid reaction. Cognitive biases serve as a warning that even the most 
advanced cognitive systems are error prone. 

2.3 COGNITIVE SCIENCE AND ITS CONNECTION TO COGNITIVE 
PSYCHOLOGY 

2.3.1 History of AI 
Modeling higher human cognitive capabilities in a computer has traditionally been the research domain of 
Artificial Intelligence (AI), as the science and engineering of making intelligent machines [6]. On the other 
hand, there was a lot of impact from experimental results in psychology or cognitive science. Both streams 
mutually influenced each other as will be illustrated next. 

2.3.2 Influence of Artificial Intelligence 
Historically, AI research oscillated between two poles which were described by Minsky [7] as “Logical 
Versus Analogical or Symbolic Versus Connectionist or Neat Versus Scruffy”. This tension between a formal 
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and mathematically exact approach versus a rather holistic, interdisciplinary approach proved fruitful and 
pushed the development of the novel research discipline. 

The eager claim to implement human intelligence by computer programs is illustrative of the early epoch of 
AI research (1952 – 1969), which Russel and Norvig [8] term “Early enthusiasm, great expectations”. Many 
groundbreaking concepts, such as the knowledge-based approach that separates a generic processing 
or inference architecture from domain-specific knowledge models were introduced, e.g., by the “Advice 
Taker” [9]. The “General Problem Solver” [10] simulates human problem solving strategies by a search 
algorithm, which was later extended to the general “Cognitive Systems Paradigm” [11]. 

The ambitions of the early years and the early implementations of search algorithms and syntactic 
transformation rules could, however, not be scaled to larger problem instances. An epoch that Russel 
and Norvig [8] term “a dose of reality” (1966 – 1973): “The fact that a program can find a solution in 
principle does not mean that the program contains any of the mechanisms needed to find it in practice”. 
In the following period (1969 – 1979), knowledge-based systems became increasingly popular. These 
systems operate on a very narrow, concisely defined problem structure, e.g., the medical diagnosis system 
MYCIN [12].  

The 1980s bear a stronger formalization as pointed out by Russel and Norvig [8]: “AI adopts the scientific 
method” (1987 – today). For selected (sub)-problems of AI, e.g., automated planning, representative test-
cases are generated and statistically evaluated. This brings objectivity and makes the performance of 
different algorithms more comparable. Despite this methodological progress, Russel and Norvig [8] regard 
the comprehensive, agent-oriented concept as a major trend: “Perhaps encouraged by the progress in 
solving the subproblems of AI, researchers have also started to look at the ‘whole agent’ problem again. The 
work of Allen Newell, John Laird, and Paul Rosenbloom on SOAR (Newell, 1990; Laird et al., 1987) is the 
best-known example of a complete agent architecture. […] One consequence of trying to build complete 
agents is the realization that the previously isolated subfields of AI might need to be reorganized somewhat 
when their results are to be tied together”. 

The “human-level AI” movement goes even further in its ambition, claiming a return of AI to its original 
goal of addressing human intelligence in all its aspects instead of concentrating in particular applications, 
e.g., chess-playing or autonomous driving. 

As illustrated in Figure 2-1, there are four options, when implementing a cognitive system, that have all been 
historically followed and influenced each other.  

The top row of Figure 2-1 deals with pure reasoning processes (thinking), whereas the lower row 
investigates the observable behavior (acting). The left column suggests human-like behavior as a success 
metric whereas the right column strives for rational behavior, that is “A system is rational if it does the ‘right 
thing’, given what it knows.” 

Modeling of rational behavior follows the long philosophical tradition of logicians (Aristotle, 384 – 322 BC) 
and formal inference. A disadvantage of this approach lies in formalizing the required real-world knowledge 
and the complexity of the inference process.  

Besides pure reasoning, the advent of robotics emphasizes physical interaction and embeddedness in a 
work-environment. Already in 1950, Alan Turing invented his “Turing-Test”, that declares a computer 
program intelligent if, after a five-minute written interaction, a human expert is unable in 30% of the cases to 
decide whether he communicated with a man or a machine.  
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Figure 2-1: Structuring of Intelligent Systems According to Russel and Norvig [8]. 

2.3.3 Influence of Cognitive Psychology 
Cognitive science investigates the human cognition process. This strategy is necessarily an experimental 
approach, involving e.g., MRT-imaging techniques of neuroscience or psychologist investigating human 
problem solving strategies in computer programs: “a cognitive theory should be like a computer 
program” [13]. 

For the psychological concept of intelligence, several definitions exist: 
• “Judgment, otherwise called “good sense,” “practical sense,” “initiative,” the faculty of adapting 

one’s self to circumstances” [14]; 
• “A general capacity of an individual consciously to adjust his thinking to new requirements... 

a general mental adaptability to new problems and conditions of life” [15]; 
• “The aggregate or global capacity of the individual to act purposefully, to think rationally, and to 

deal effectively with his environment” [16]; 
• “Goal-directed adaptive behavior” [17]; and 
• “Intelligence measures an agent’s ability to achieve goals in a wide range of environments” [18]. 

The term cognition comes from the Latin word “cognoscere”, which means to conceptualize or to 
recognize. It is often stated that cognition encompasses an information processing act. While in the 
early 20th century, behavioristic psychology was dominant, with the “cognitive revolution” around the 
year 1956, the emphasis shifted towards internal, mental processes. Higher human cognitive capabilities 
encompass e.g., situation awareness, attention, problem solving, planning, remembering, learning and 
language understanding. In the following twenty years, several cognitive capabilities were analyzed and 
understood by psychologists using symbol processing computer programs. This “Computer-Metaphor” 
is based on the physical symbol system hypothesis, which states that “A physical symbol system has the 
necessary and sufficient means for general intelligent action.” [19]. AI software based on 
symbol-manipulation, such as the “General Problem Solver” is nowadays often referred to as “Good 
Old Fashioned Artificial Intelligence” [20]. Modern software-tools in cognitive psychology hence also 
include sub-symbolic approaches, e.g., based on activation patterns or neural nets. 
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2.4 SITUATIONAL AWARENESS AND CONNECTION TO 
PERCEPTION-ACTION CYCLE 

Situation Awareness (SA) is a psychological concept, that is closely linked to others like perception, 
attention, and workload. Several definitions exist, including: 

• “Continuous extraction of environmental information, integration of this knowledge to form a 
coherent mental picture, and the use of that picture in directing further perception and anticipating 
future events” [21], 

• “Just a label for a variety of cognitive processing activities that are critical to dynamic, 
event-driven and multitask fields of practice” [22], and 

• “Situation awareness is the perception of the elements in the environment within a volume of time 
and space, the comprehension of their meaning, and the projection of their status in the near future” 
[23]. 

Mica Endsley’s definition and the model shown in Figure 2-2 are particularly widespread. She describes 
three levels of SA, whereas level 1 (“perception of elements in current situation”) encompasses all directly 
perceived objects (e.g., cars, aircrafts, pedestrians) in a scene and their state (e.g., position, dynamics, mode 
of operation). Level 2 SA (“comprehension of current situation”) describes the association between 
perceived objects towards an abstract description of the situation. For this, an interpretation and assessment 
of the facts due to a-priori knowledge and experience is required. Level 3 (“projection of future status”) 
extrapolates L1 and L2 elements perceived into the future. This represents an even further degree of 
abstraction and allows statements about future events. 

 

Figure 2-2: Endsley’s Model of Situational Awareness. 



COGNITIVE PROCESSES 

STO-TR-SET-227 2 - 7 

The information processing scheme according to Wickens [24], shown in Figure 2-3, is a standard model in 
many cognitive architectures. The approach distinguishes between the pure reception of a stimuli by the 
receiving organs and the information processing by higher cortical structures in the brain. The reception of 
the stimuli is represented by the short-term sensory store, which can hold a large amount of data for short 
time (e.g., 0.1 – 0.5 seconds) to provide the incoming signals to the subsequent perception and pattern 
recognition processes. 

 

Figure 2-3: Wickens’ Model of Information Processing [24]. 

The interpretation of the signal into an internal, semantic representation (called mental models) happens in 
the “perception” block. The “decision and response selection” and “response execution” blocks represent 
subsequent human decision-making and plan execution stages. The working memory can temporarily hold 
information for about 20 – 45 seconds. According to Miller [25], its capacity is restricted to 7 ± 2 chunks  
of information (e.g., remembering the digits in a telephone number). The long-term memory, in contrast, 
retains large chunks of information for long time periods (e.g., a lifetime). In the Wickens model, a limited 
amount of Attention Resources is available to be distributed among the different information processing 
blocks. 
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Chapter 3 – ARCHITECTURES AND COMPONENTS 

3.1 INTRODUCTION 

This chapter introduces the cognitive radar architecture and its main functionalities. The main scientific 
findings in the cognitive radar area are firstly reported. The chapter is then focussed on the design of a 
cognitive radar architecture based on multiple layers. Then, examples of radar applications exploiting 
cognitive architectures are presented together with a set of meaningful results. Finally,  
a Strengths/Weaknesses/Opportunities/Threats (SWOT) analysis is presented in order to highlight the main 
advantages and potential weaknesses of the cognitive paradigms.  

3.2 COGNITIVE RADAR: HIGH LEVEL ARCHITECTURE 

The concept of cognition to empowered engineering systems has been introduced and formalized for the first 
time by Haykin in 2006 [26]. According to Haykin’s statement, Cognitive Radar architectures are characterized 
by one or more feedback loops from the radar receiver to the transmitter, controlling the Radar’s operational 
parameters to continuously optimize some performance metric [26]. The National Institute of Health (NIH) 
defines cognition as “conscious mental activity that informs a person about his or her environment. Cognitive 
actions include perceiving, thinking, reasoning, judging, problem solving, and remembering” [27]. There is 
have still no exact definition in the community, on what general building blocks a cognitive radar architecture 
must possess. However, there is common a notion that cognitive radar should resemble the cognitive skills of 
humans or certain animals, such as bats or dolphins. It is well known (see e.g., Simons, 1973 [28] and 
Thomas et al., 2004 [29]) that bats and dolphins are able to “see” very small prey (as compared to their own 
size) and can track them by adjusting both the duration and the repetition frequency of the emitted pulse bursts 
based upon the range and the velocity of the targets. Some dolphin species, such as the Bottlenoses, are able to 
detect, classify, and localize targets the size of a sardine, in cluttered background, over ranges from 0 m to 
about 150 m, in any sea condition, and all maritime environments, from the open ocean to rivers and estuaries 
[30], [31]. Of course, it is not trivial to implement in a real radar system all the functionalities of a well-trained 
bio-sonar, which has been evolving over millions of years, although some effort along these lines has been 
successfully pursued. In this direction, several architectures have been proposed in the literature for various 
purpose, the basic architectures are here recalled. 

3.2.1 Guerci’s Perspective and Architectures 
Guerci envisions a Cognitive Radar (CR) capable of “sensing, learning, and adapting to complex 
situations with performance approaching or exceeding that achievable by a subject matter expert, 
especially for real time operations which demand automation” [32], [33]. He proposed the following 
mapping of biological cognitive properties to cognitive radar: 

• Perceiving Sensing; 

• Thinking, reasoning, judging, problem solving  Expert Systems, Rule-Based Reasoning, Adaptive 
Algorithms and Computation; and 

• Remembering Memory, Environmental Database. 

The fully adaptive radar architecture proposed by Guerci in his book [32] and other publications in 2010, 
thus envisioned an integration of Knowledge-Aided (KA) algorithms with an Adaptive Transceiver. 
Drawing upon an Environmental Dynamic Database (EDDB), which would contain endogenous and 
exogenous information sources, the radar system would thus both adapt on receive, vis-à-vis the adaptive 
signal processing algorithms used to analyze the received data, as well as adapt on transmit, by selecting 
optimal waveforms (Figure 3-1). 
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Figure 3-1: Cognitive Radar Architecture Proposed by Guerci [27]. 

While the terms “fully adaptive” and “cognitive” were in the early years seen as synonymous, beginning in 
2015 the definitions began to diverge, so that the term “cognitive” also embodied a distinct requirement for 
learning to be incorporated in the system. Accordingly, in 2014 Guerci began to use the term “Cognitive 
Fully Adaptive Radar” (CoFAR) to describe a revised version of the 2010 cognitive radar architecture [33]. 
In this new architecture, a “Sense-Learn-Adapt” (SLA) cycle, pictured in Figure 3-2, was proposed  
to represent the elements of cognition: 

• Sense – Transmit and receive functions jointly optimized to enhance performance; utilized in new 
ways to enhance channel estimation; 

• Learn – KA expert systems utilizing supervised learning; and 

• Adapt – Adaptive parametric approaches; waveform and spatial diversity. 

 

Figure 3-2: Sense-Learn-Adapt Cycle [27]. 
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These concepts led to the proposed CoFAR architecture shown in Figure 3-3, which is fundamentally similar 
to the original 2010 architecture but employing “CoFAR” blocks enabling “sense-learn-adapt” functions to 
be distributed throughout the system. 

 

Figure 3-3: CoFAR Architecture Proposed by Guerci [33]. 

3.2.2 Haykin’s Perspective and Architecture 
Haykin introduced cognitive radar (Figure 3-4) as a radar system with three basic ingredients:  

1) Intelligent signal processing, which builds on learning through interactions of the radar with the 
surrounding environment;  

2) Feedback from the receiver to the transmitter, which is a facilitator of intelligence; and  

3) Preservation of the information content of radar returns by the radar scene analyzer.  

Later in his book he elaborated the high level diagram of cognitive radar with perception-action cycle, 
memory, attention and intelligence [34].  

The Perception-Action Cycle (PAC) is now widely accepted as the key idea of cognitive radar. 

The PAC (Figure 3-4(b)) constitutes a dynamic closed feedback loop, in which the transmitter supplies 
intelligent illumination of the environment, while the “receiver continuously learns about the environment 
through experience gained from interactions with the environment and, in a corresponding way, continually 
updates the receiver with relevant information on the environment”. 

In addition to the concept architecture, Haykin indicated that for the radar to be cognitive, adaptivity has to 
be extended to the transmitter from the receiver adaptivity in traditional radar [26]. To account for this, a CR 
has to embody four ingredients: the PAC, memory, attention, and intelligence. The PAC and memory, 
occupying their distinctive places within the radar system architecture, are depicted in Figure 3-5 [35], [36].  
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(a) (b) 

Figure 3-4: Haykin’s Diagram of Cognitive Radar: (a) Concept Architecture; (b) Perception-
Action Cycle. 

 

Figure 3-5: Diagram of Cognitive Radar with Memory. 

The radar cognition is driven by the perception-action cycle and memory. Through waveform adaptation, 
which is performed in the perception-action cycle, cognitive radar gains control over certain aspects of the 
sensing process. Therefore, the perception-action cycle ties together estimation (through sensing) and 
control. Hence, cognition equips a radar with controlled-sensing ability to counteract the effect of 
environment. In the extended architecture (Figure 3-5), Haykin described three kinds of memory: perceptual 
memory, executive memory and working memory. 

• Perceptual Memory: The part of memory that resides in the receiver is called perceptual memory.  
It would be desirable for the perceptual memory to have a multiscale structure. 

• Executive Memory: The part of the memory that resides in the transmitter is called the executive 
memory, whose structural composition follows a similar format to that of the perceptual memory, 
with the following basic difference. Whereas the perceptual memory sees the radar environment 
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through the measurement vector directly, the executive memory sees the radar environment 
indirectly through the feedback information about the environment supplied to the transmitter by  
the receiver. Note also that the executive memory is reciprocally coupled to another library called 
the transmit-waveform library. 

• Working Memory: The working memory is a dedicated memory with limited capacity that provides 
an interface between perception and action by linking the perceptual and executive memories 
together. Unlike the perceptual and executive memories that are long-term memories, working 
memory has a short-term nature, and it is therefore used for temporary information storage. 

Subsequently, Haykin presents a Bayesian framework for the example of target tracking (Figure 3-6), which 
utilizes a continuous-discrete cubature Kalman filter, along with simulation results for the design. In this 
framework the aforementioned neural-network-based three-part memory design is not utilized, with the 
state-space formulation of the Kalman filter instead serving to emulate the perception-action-cycle.  
The cycle begins with the transmitter illuminating the environment. The radar returns produced by the 
environment are fed into two functional blocks: radar scene analyzer which gives information on  
the environment and Bayesian target-tracker which gives traditional target state estimation, implementing the 
following steps: 

• One-step predictor, whose output is described by the conditional probability; 

• Filter, whose output is described by the conditional probability; and 

• Smoother, whose output is described by the expanded conditional probability. 

It is important to point out that the function of the radar scene analyzer, which is of critical importance to the 
decisions made by the receiver on possible targets of interest, builds on two sources of information-bearing 
signals:  

• Radar returns, which are produced by the environment in response to the radar’s own transmitted 
signal; and 

• Other relevant information on the environment (e.g., temperature, humidity, pressure, sea-state), 
which is gathered on the fly by sensors other than the radar itself. 

 

Figure 3-6: Block Diagram of Cognitive Radar as a Dynamic Closed-Loop Feedback System. 
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From Haykin’s definition, a cognitive radar has four abstracted elements. These elements are actually 
applicable to a general cognitive system, formulating the so-called “perception-action” cycle: 

• To sense and analyze the environment (perception); 
• To learn important features about the target and the background at the receiver (learning); 
• To decide feedback information to the transmitter (decision); and 
• To act out the transmitted waveform (action).  

Memory plays a critical role in human cognition and in cognitive radar systems too. Memory is not only just 
the recorded data, but also the intelligent way of accessing and reprocessing the data when needed.  
Other CRs key ingredients are “Attention” and “Intelligence”. 

Attention is defined as “(a) memory driven algorithmic mechanism that indirectly exploits inputs from (the) 
perception-action cycle; it is made up of perceptual attention in the receiver and executive attention in the 
transmitter.” For the tracking application, an “explore-exploit strategy” for search from cycle-to-cycle in  
the neighborhood of a center point is given as a means for implementing executive attention and enable 
temporal stability on the time rate of change in the transmit waveform. 

Intelligence is defined as an “attention-driven algorithmic mechanism that is distributed in an abundant use 
of feedback loops throughout the radar; it exploits inputs from attention directly, and indirectly from memory 
and perception-action cycle. The function of intelligence is to enable the controller in the transmitter to pick 
a transmit-waveform vector, so as to exercise control over the receiver in a robust manner in the face of 
environmental uncertainties and disturbances”. 

Although Haykin’s work emphasizes waveform design and selection, so as to adapt the transmitted signal in 
response to information learned from the environment and in consideration of current performance, in the 
most general sense the implementation of action is not limited to just adapting the transmit waveform,  
but involves control of adaptive hardware in general, such as: 

• Antenna beam pattern; 
• Polarization; 
• Frequency; 
• Adaptive transceiver components, including filters and amplifiers; and 
• Piezo-electric materials and meta-materials. 

A generalization of Haykin’s ideas to include multiple sensors, with explicit depiction of radar resource 
management tasks, such as scheduling and control, is reflected in the generalized cognitive radar framework 
proposed by Martone in 2014 (Figure 3-7) [37]. 

In this work, Martone specifies the fundamental components of all cognitive systems as: 
• Informed decision making via the decision-theoretic approach; 
• Passive environmental sensors and radar sensors; 
• Learning algorithms to improve performance and adapt to unknown environmental scenarios; 
• A knowledge database that contains environmental, clutter, target and other a priori information; 
• A waveform-solution space for known targets of interest; and 
• Receiver-to-transmitter feedback to mitigate clutter/interference and maximize target information. 
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Figure 3-7: Martone’s Proposed Cognitive Radar Framework. 

3.3 DESIGN OF COGNITIVE RADAR ARCHITECTURES 
The main concepts proposed in the previous section, are faced in the design of the cognitive radar 
architecture based on multiple layers:  

1) Cognitive Radar Architecture Based on Information Abstraction Levels; and  
2) Design of a three-layer cognitive radar architecture. 

3.3.1 Cognitive Radar Architecture Based on Information Abstraction Levels 
In order to realise cognitive radar a suitable system architecture is required, which comprises the essential 
perception-action feedback and memory. A typical requirement is that the architecture consists of multiple 
hierarchical levels, because it is necessary to make decisions on different time scales. Additionally, it is 
desirable that a cognitive radar architecture extends standard radar architectures, such that standard radar 
techniques are clearly identifiable. This section describes a cognitive radar architecture from Charlish and 
Hoffmann [38], which is based on information abstraction levels. The architecture was adopted by the 
NATO SET-223 group on adaptive radar resource management and hence this description is a slightly 
altered version of the description available in the group’s report [39]. A cognitive radar system architecture 
can be constructed based on a hierarchy of information abstraction levels. Abstraction levels for sensor data 
and information processing have been widely studied, most notably by the JDL model [40] and its revised 
versions [41], [42]. Based on these studies, information abstraction levels relevant for a radar system can be 
identified as the signal, measurement, object, situation, and mission levels. This information abstraction 
hierarchy acts as a bridge between radar signals and the operator’s mission objectives or requirements.  



ARCHITECTURES AND COMPONENTS 

3 - 8 STO-TR-SET-227 

Key activities performed at each level are:  
• Assessment / Perception Generation. Extract information from observed sensor data and process 

the data to generate perceptions (e.g., of objects, situations or missions). 
• Learning and Reasoning. Learning to construct and refine models that explain the observed sensor 

data as well the influence that actions can have on the environment. 
• Management /Action. Performing decision making and control of the radar data collection process. 
• Communication. Sharing of acquired knowledge. 

These processes can be performed at each of the previously identified abstraction levels. Figure 3-8 
illustrates an adapted version of the cognitive radar architecture by Kester [43] and Smits et al. [44]. 
Examples of common radar signal and measurement data processing techniques as well as examples of radar 
management techniques are illustrated at the appropriate abstraction level in the assessment and management 
branches respectively.  

 

Figure 3-8: Radar System Architecture, Structured in Information Abstraction Levels. 
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The abstraction levels can be grouped as functional, executive, or deliberative levels. The functional levels 
execute a specific capability and are focussed on short time horizons, with a rapid feedback and hence 
reaction time. The executive level deals with the state of tasks and how tasks are executed, utilizing the 
capabilities of the functional levels. The deliberative levels assess and manage the current situation and 
mission and generate the tasks that are necessary to perform. The deliberative levels react slowly and 
deliberate over longer time horizons. The deliberative levels are traditionally associated with a command  
and control system and not normally thought of as a radar capability. A key characteristic of the multiple 
hierarchical levels is that each level has a different feedback and reaction time. The signal level can react 
potentially in sub milliseconds, the measurement level in milliseconds, the object level in seconds,  
the situation level in tens of seconds and the mission level over minutes or hours. 

In the cognitive radar system architecture illustrated in Figure 3-8, the assessment branch is responsible for 
processing data to a higher information abstraction level. At the signal level, standard techniques such as 
matched filtering, Doppler processing or Space-Time Adaptive Processing (STAP) can be applied to filter 
received radar signals to suppress interference. At the measurement level, detections can be generated by 
applying an appropriate threshold on the signal intensity and multiple detections can be combined to 
generate radar measurements. These measurements, consisting of unambiguous position and velocity point 
measurements for instance, can then be passed to the object level. At the object level, radar measurements 
can be used to perform tracking or classification to estimate object data such as kinematic parameters or the 
object class. These components comprise the traditional radar signal and data processing chain. 

At the deliberative levels, relations between different objects’ data can be used at the situation level to 
estimate properties of the current situation, such as detecting anomalies. Flags of anomalous or threatening 
behaviour are examples of data that can be passed to the mission assessment level. Finally, the current 
situation can be assessed with respect to the mission objectives at the mission level, to achieve an impact 
assessment. The ability to adapt the assessment processing to the environment enhances the extraction of 
relevant information, which strongly influences the fidelity of the signal, burst, measurement, object, 
situation and mission assessment that is constructed at each level. 

The data assessment branch relies on prior or acquired knowledge that is relevant to each abstraction level. The 
combination of knowledge acquisition and data assessment constitutes adaptive processing. For example, 
STAP techniques at the signal level are required to learn the clutter or interference covariance matrix so that the 
interference can be suppressed and the signal to interference ratio enhanced. At the measurement level, 
knowledge of the current clutter and target statistics enables the correct detection threshold to be set for the 
current environment. At the object level the target motion models can be learnt for robust tracking of 
manoeuvring targets or clutter maps can be learnt for robust track extraction in cluttered environments. At the 
situation level, knowledge of the situation pattern of life can be learnt to aid anomaly detection. The extent to 
which knowledge is learnt clearly influences the performance of the data assessment processes. 

Given the acquired knowledge and the multi-level perception generated by the data assessment processes, 
the management branch manages the data assessment processes as well as defining the requirements for the 
level below. At the mission level, radar capabilities can be planned over the mission duration, such as 
adjusting the sensing requirements for different mission phases. Based on these sensing requirements and the 
current situation assessment, the situation manager can assign priorities, objective or utility functions to 
specific tasks or objects. The task priorities or utility functions can be used by the object manager for task 
management, to generate optimized task control parameters that control aspects such as the waveform 
selection or task revisit interval time. At the measurement level, radar dwells and bursts can be scheduled for 
radar tasks, adhering to the task control parameters from the object level. Finally, at the signal management 
level, the waveform can be adapted and generated given knowledge of the radar channel as well as the radar 
burst schedule. The ability of the management branch to generate mission, scenario, and environment 
dependent signals clearly influences the quality or relevance of the information contained in the radar signals 
that are returned. 
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3.3.2 A Three-Layer Cognitive Radar Architecture 
Figure 3-9 depicts a three-layer cognitive radar architecture [45] that is inspired by the Rasmussen model 
[46] of human cognitive performance and exhibits the four fundamental cognitive abilities postulated by 
Haykin – including provisions for learning. The traditional perception-action-cycle concept is applied on 
different layers and attempts to also address high cognitive abilities. To account this, the architecture is 
explained. Then, each layer is illustrated with some examples from the broader field of non-cooperative 
target classification. On the skill-based layer, we present matched illumination results for optimal waveform 
generation. Rule-based behaviour is explained using an illumination policy for target classification. Finally, 
knowledge-based behaviour is described by task-based execution of a ground target reconnaissance mission. 

 

Figure 3-9: Three-Layer Cognitive Radar Architecture. 

As stated above, the concept shown in Figure 3-9 is derived from the Rasmussen model of human 
cognitive performance [46], that has been successfully applied in cognitive psychology, human factors and 
robotics. Rasmussen characterized human behaviour when operating complex machinery on three layers 
of increasing abstraction. The skill-based-behaviour (lowest layer) describes subconscious, continuous 
control tasks (e.g., keeping the lane when driving a car). In the radar analogy, we map the subsymbolic, 
low-level signal generation and processing tasks to this layer. The rule-based layer is characterized by 
conscious control and symbolic representation. It allows a human to efficiently react to known cues in the 
environment by the execution of pre-stored procedures, e.g., reacting to a red traffic light. The transition 
between the subsymbolic and symbolic representation of the environment, known as semantic gap, is not 
an easy task, but has recently been successfully bridged by deep learning methods [47]. We summarize on 
the rule-based layer reactive and immediate behaviour, that is however not directly operating on the 
raw-signal data. Optimal control decision making and resource management methods are major driver in 
this layer. The highest level of abstraction is denoted as knowledge-based behaviour. It allows a human to 
further infer and abstract from the situation. There are no pre-stored rules, deliberation happens based on 
explicit knowledge, e.g., bypassing a traffic jam by using a map. Decision making and planning are 
typically long-term, and in a goal-oriented manner, e.g., each long-term action of the cognitive radar on 
this layer can be traced to high level goal. For a human, and presumably also a cognitive radar system, the 
three layers are interwoven and not as clearly separable. In the following, radar examples for action in 
each of the three layers are presented: 
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1) Skill-Based Layer. As a cognitive radar example on the skill-based-behaviour, an example for the 
coexistence of radar and other RF-emitters is reported [48]. As shown in Figure 3-10, a wideband 
radar signal HRR imaging between 5 – 7 GHz was created using a stepped frequency approach. The 
range profiles in the simulation shown on the right illustrate five-point scatterers at 5 m, 7 m, 16 m, 
20 m, 21.5 m. A stepped frequency waveform with 400 subcarriers with uniform frequency steps are 
shown. In Figure 3-10b, to Figure 3-10d, traditional IFFT processing of the received signal is shown 
in black, a new novel compressed sensing approach using OMP is shown in red. It is apparent, that 
the number of subcarriers can be reduced to a quarter, while the point scatterers are still visible from 
the noise. Using traditional IFFT processing, the noise flor raises. A cognitive radar system could 
monitor and predict such spectral holes to dynamically adjust the TX frequency steps to avoid 
interference. In the literature, there are many other options of matching the transmit signal to the 
target impulse response or the transmission channel [32]. 

  

Figure 3-10: RF Coexistence Using Compressed Sensing the Frequency Domain. 

2) Rule-Based Layer. In the rule-based layer we will illustrate decision making using 
Markov-Decision-Processes (MDP). The example is an application of the work from Castañón [49] 
for the classification of air-targets. As shown in Figure 3-11, three different types of target are 
present (blue, green and red). The objective is to discriminate the high-value target K1 with a high 
probability against the other two classes (not K1). The confusion matrix shows the probability for 
correctly classifying target = K1 (given the true class), for a low resolution mode #1, and a higher 
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resolution mode #2. It is assumed here that higher bandwidth leads to a better separation between 
K = 1 and K = 2. Also, a cost matrix is given, which defines the cost for a false alarm and missed 
detection. With this information, a Markov Decision Problem can be stated and solved for 
minimization of the expected cost. The result is called an optimal decision policy and shown in the 
upper right picture. Based on the result of the first interrogation with the high resolution waveform, 
the cognitive radar system will branch and request further illuminations or state a final target 
declaration. MDPs are a quite flexible mathematical tool to derive a predefined decision policy for 
cognitive radar applications. 

 

Figure 3-11: MDP for Optimal Illumination Sequences for Target Classification. 

3) Knowledge-Based Layer. The knowledge-based layer addresses long-term situation awareness and 
mission planning problems [50]. The deliberation algorithms applied here typically do an 
online-search in the task space from the current state to some state that satisfies the goals. It is a 
symbol transformation process, so the result of the inference or planning procedure can be made 
explicit to the operator. Algorithms suite for this class of problems are constraint satisfaction, 
mixed-integer linear-programming or automated planning tools. Figure 3-12 shows an example for 
RF-Mission planning using PDDL planning. The figure on the right shows different tasks for 
RF-systems and the platform with parallel temporal execution. 

The three presented layers operate on different levels of abstraction, time scales and knowledge 
representation. Example radar applications for each of the layers have been reported. A key challenge is to 
combine and coherently integrate the various behaviours in a consistent and comprehensive fashion. 
Individual perception-action loops have been validated in simulation and with small-scale laboratory 
experiments. The perspective of the proposed architecture relies on the full potential of this cognitive radar 
architecture which could be exploited in upcoming, flexible, software-defined Active Electronically-Scanned 
Array (AESA) radars in combination with next generation platform mission management systems and 
human operator interfaces. 
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Figure 3-12: Knowledge-Based Planning. 

3.4 COGNITIVE ARCHITECTURES FOR RADAR APPLICATIONS 

The implementation of a cognitive radar architecture changes on the base of the radar application of 
interest. This is due to the flexibility, versatility and scalability of such systems. This aspect is analyzed 
in the framework of multi-function radar in resource-constrained systems and spectrum-constrained 
availability. Specifically, an example of cognitive architectures for imaging radar with detection 
capability and for spectrum sensing applications will be presented in the following. 

3.4.1 Imaging Radar Cognitive Architecture 
To be cognitive, a radar system should be able to “intelligently” adapt its own behaviour in a 
self-organized manner and in accordance with the environmental changes through a process called 
learning from experience [26]. This adaptation is accomplished through three main functions: intelligent 
signal processing, receiver-transmitter feedback, and preservation of information (see Section 3.1). 
Figure 3-13 represents a cognitive radar high level architecture applied to the imaging radar with 
detection capability. The architecture demonstrates the implementation of these three functions through 
the following components: 

1) The Radar Transmitter and Receiver. The transmitter acts on the transmitted waveform over 
time according to the environmental changes to optimize performance through an “intelligent” 
signal processing on the receiver. The intelligence on the receiver is built on learning through  
a continuously interactions of the radar with the environment and enables the signal processing 
to adapt in a dynamic way itself to the measured performance in order to enhance them. 
Cognitive also means intelligence adaptive waveform. In other words, it also acts on transmitted 
waveform. 

2) The Cognitive Block. This block exploits the information given by the signal processing block 
in order to learn on the most suitable action to be performed by the transmitter block in order to 
meet the needs of the radar mission (e.g., Clutter cancellation, interference mitigation, detection, 
imaging) according to a desired performance. This process is based on an iterative improvement 
of the performance measured a number of ad hoc indexes. This measure of the level of the radar 
mission success provides the necessary feedback to ensure that the system is able to learn from 
its past actions. 
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The cognitive block generally includes (Figure 3-14): 

• A system success measure block enabling the link from the receiver to the transmitter so as  
to inform it about the received signal processing results. This functionality is made feasible through 
the controlling functions which represent an intrinsic measure of the system performance because 
their dependency of performance indexes (output of performance calculation block). The controlling 
functions change over the performance indexes and handle the actuating function to perform  
the adjustment of the system reconfigurable parameters (e.g., waveform parameters). 

• A memory block embodying the consciousness of the system. It provides the means for learning 
from past experiences. Memory is dynamic because its content continually changes over time  
in accordance with the environment changes. Specifically, if the radar environment changes 
suddenly or if it is completely unknown the radar has to probe the surrounding to enrich the memory  
by updating the rules used to adapt the actuating functions accordingly. 

• A feedback-based decision making block identifying the better way to change the system parameters 
(e.g., waveform parameters) and the signal processing techniques by investigating both the memory 
and the success blocks. This process is feasible through the actuating function whose role is to alert 
the system when something goes wrong during the reception. 

For further details on the implementation of the presented architecture, please refer to the “Applications” 
chapter (Section 6). 

 

Figure 3-13: Cognitive Radar High Level Architecture Applied to Radar Imaging. 
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Figure 3-14: Example of the Cognitive Block Ingredients. 

3.4.2 Spectrum Sensing Architecture for Cognitive Radar 
The problem of the RF spectrum sharing by the growing number of system and services is here dealt with 
from the point of view of the cognitive radar paradigm. The cognitive radar is conceived as a potential way 
to mitigate the conflict among the scarcity of spectrum, the inefficient usage of it and the maintenance of 
radar capabilities. To face with these issues, the radar should be able to estimate the behaviour of other 
emitters to adapt its transmission to the spectrum ongoing usage by exploiting the maximum availability 
bandwidth and minimizing the mutual interferences with primary services (e.g., communication services). 
To account this, the cognitive radar must adopt a strategy that is conceptually summarized in the cognitive 
cycle shown in Figure 3-15. 

 

Figure 3-15: Cognitive Radar Cycle. 
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The main functionalities behind this concept are the spectrum sensing, the channel characterization and the 
spectrum sharing. Specifically, the Spectrum Sensing function has the goal to obtain necessary observations 
about the radio frequency channel, such as the presence of other users and the appearance of spectrum 
opportunities where it is possible to transmit without interfering. This observation is obtained by exploiting 
the signal at the radar receiver or, with a separate receiver chain, by observing directly the radio frequency 
channel. 

Proceeding in the counter-clockwise direction, the decisions on the free/busy channels feed the Channel 
Characterization function. The role of this function is to characterize statistically the spectrum usage of the 
primary user, to find the most appropriate model for the primary user dynamics, and to estimate the channel 
parameters that describe the model.  

The Channel Characterization function feeds the Spectrum Sharing function, which has the goal to limit 
interference from the radar to other services and vice versa. The Spectrum Sensing function processes the 
information arising from the Channel Characterization function to control the Radar Functions. These 
functions are the typical functions of a radar system, with the exception that in each time slot, which 
coincides with the Pulse Repetition Interval (PRI) or with the Coherent Processing Interval (CPI), the 
transmit and receive parameters (e.g., the transmission power and the operating frequency) are dynamically 
adapted in order to achieve efficient spectrum utilization and avoid interference. The Cognitive Cycle 
summarized in Figure 3-15 represents the perception-action cycle as defined by Haykin [26]. The 
perception-action cycle is the fundamental layer of a cognitive system; in our context, the perceptors are the 
Spectrum Sensing and Channel Characterization functions, while the actuator is the Spectrum Sharing 
function. In response to feedback information about the environment from the perceptor, the actuator 
controls the perceptor via the environment, and the cycle goes on. In other words, the perceptor guides the 
actuator by virtue of what it learned about the environment, and the actuator controls the perceptor by acting 
in the environment. The benefit resulting from the perception-action cycle is that of maximizing the 
information gained from the environment. 

Figure 3-16 shows a possible system architecture of a cognitive radar system. As shown, the cognitive layer 
is an additional layer that directly controls the transmitter and the receiver of a radar system. In the more 
complex systems, the Spectrum Sensing and the Channel Characterization functions directly observe the 
radio frequency channel with separate receiver chains. On the other hand, in the simpler and cheaper systems 
these functions process the signal at the radar receiver. In both cases, the radar transmitter is directly 
controlled by the cognitive layer that elaborates the feedback information arising from the receiver. 
The cognitive functions are described in the following subsections. 

Spectrum Sensing is the first critical step toward dynamic spectrum management. Through this function, 
a cognitive radar can obtain necessary observations about the radio frequency channel, such as the presence 
of primary user and the appearance of spectrum opportunities where it is possible to transmit without 
interfering with the primary users of the channel. 

Typically, Spectrum Sensing is performed in time, frequency, and space domains. When the cognitive radar 
is a phased array using beamforming technology, multiple users can utilize the frequency channel at the 
same time in the same geographical location. Thus, if a primary user does not transmit in all directions, extra 
spectrum opportunities can be created for secondary users in the directions where the primary user is not 
operating, and Spectrum Sensing needs also to take the angles of arrivals into account [51], [52], [53]. 

Spectrum Sensing can be performed via two different architectures: single-radio and dual-radio [54]. In the 
single-radio architecture, only a specific time slot of the signal at the radar receiver is allocated for Spectrum 
Sensing. Because of this limited sensing time, only a certain accuracy can be guaranteed for Spectrum 
Sensing results. The obvious advantages of single-radio architecture are simplicity and lower cost.  
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Figure 3-16: System Architecture of a Cognitive Radar. 

In dual-radio sensing architecture, one radio chain is dedicated to the radar operations while the other chain 
is dedicated to Spectrum Sensing. Note that a single antenna would be sufficient for both chains. 

However, in a multi-function radar framework, where the required time used to estimate the spectrum 
occupancy is very short and the monitored frequency band is wide, the main drawback of the dual-radio 
architecture is the increased power consumption and hardware cost, as the related systems requires high 
sampling rate and high resolution Analog-to-Digital Converters (ADCs) with large dynamic range, plus the 
use of high speed signal processors.  

However, for this particular scenario, some recent works (see e.g., Gromek et al. [55]) proposed the use of 
Compressed Sensing (CS) for Spectrum Sensing to solve important problems related to hardware 
complexity, because of the need to design a responsive Spectrum Sensing system, able to react quickly to the 
changes within the radio channel. 

The open literature on Spectrum Sensing focuses on primary transmitter detection based on the local 
measurements made by the secondary users, since detecting the primary users that are receiving data is in 
general very difficult. According to the a priori information they require and the resulting complexity and 
accuracy, Spectrum Sensing techniques can be clustered into the following main categories [30]: Energy 
Detector (ED), Feature Detector (FD), and matched filter (MF) detector techniques. 

The ED is the most common Spectrum Sensing detector because of its low computational cost and 
implementation complexity. In addition, it does not need any a priori knowledge on the signal emitted by the 
primary users. Detection is performed by comparing the output of the energy detector with a threshold, 
which depends on the noise floor. Some of the drawbacks of the energy detector are the inability to 
differentiate interference from primary users and noise, inefficiency for detecting spread spectrum signals, 
and poor performance in low signal-to-noise ratio situations [53]. 
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The threshold of the energy detector is selected as a trade-off between the probability of detection and the 
probability of false alarm. It is important to note that typically in a radar detector, the probability of false 
alarm is set to a desired value and the probability of detection is maximized according to the 
Newman-Pearson criterion. For radar functions, it is convenient to keep constant the probability of false 
alarm to a low value because a false alarm is more problematic than a missed detection. In fact, for each 
detection many radar procedures, such as target tracking and target identification, are activated. Hence, if 
there are many false alarms, a great portion of the system memory and computational capabilities are 
occupied for the tracking of inexistent targets. For the problem of Spectrum Sensing, being the radar the 
secondary user of the channel, the more problematic event is the missed detection, i.e., when the channel is 
declared as free while, in reality, the primary user is transmitting. For this reason, it is more convenient to set 
the probability of detection to a desired value and minimize the probability of false alarm. However, this 
requires knowledge of noise and detected signal power levels. The noise power can be estimated, but the 
signal power is difficult to estimate as it changes depending on ongoing transmission characteristics and the 
distance between the cognitive radar and primary user.  

In practice, also for the Spectrum Sensing detector the threshold is usually chosen using the 
Newman-Pearson criterion. In this case, the threshold depends on the noise variance. Consequently, a small 
estimation error of the noise power causes a significant performance loss.  

Several works addressed the following problems:  

1) Dynamical estimation of the noise level by separating the noise and signal subspaces using MUltiple 
Signal Classification (MUSIC) algorithm [31];  

2) Design of iterative algorithms to find the decision threshold to satisfy a given probability of false 
alarm [31]; and 

3) Design of forward methods based on energy measurements for unknown noise power 
scenarios in Metcalf et al. [56]. 

Another type of Spectrum Sensing detector is the FD. There are specific features associated with the signal 
transmitted by a primary user. For instance, the statistics of many communication signals show some 
inherent periodicities such as the modulation rate or the carrier frequency. Such features are usually viewed 
as cyclostationary features, based on which a detector can distinguish cyclostationary signals from stationary 
noise. The cyclostationary feature detector was first introduced by Simons [28]. Since the transmitted signals 
in most communication systems are modulated signals coupled with prefix cycles, headers and pilots, while 
the additive noise is generally wide sense stationary with no correlation, cyclostationary feature detectors can 
be utilized to differentiate noise from primary user’s signals. Compared with energy detectors that cannot 
detect weak signal in noise and are prone to high false alarm rate due to noise uncertainty, cyclostationary 
detectors are good alternatives because they can differentiate noise from primary user’s signal and have 
better detection robustness in a low-SNR regime. However, the computational complexity and the significant 
amount of observation time required for adequate detection performance prevent a wide use of this approach.  

The last kind of detector is the MF detector. Matched filtering is known as the optimum method for detecting 
primary users when the transmitted signal is known. The main advantage of matched filtering is the short 
time to achieve a given probability of false alarm or a given probability of missed detection [29] as compared 
to the other methods discussed in this section. However, matched filtering requires a perfect knowledge of 
some primary users signaling features, such as bandwidth, operating frequency, modulation type, pulse 
shaping, and frame format. Moreover, since cognitive radio needs receivers for all signal types, the 
implementation complexity of sensing unit is impractically large. If the MF design relies on wrong 
information, the detection performance will be largely degraded.  

Table 3-1 summarizes the main Spectrum Sensing techniques described in this section, focusing on their 
main advantages and disadvantages. 
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Table 3-1: Summary of Spectrum Sensing Techniques. 

Type Test Statistics Advantages Disadvantages 

Energy 
Detector 

Energy of the received signal • Easy to implement 

• Doesn’t require 
prior knowledge 
about primary 
signals 

• High false alarm rate 
due to noise 
uncertainty. 

• Very unreliable in 
low-SNR regimes. 

• Cannot differentiate a 
primary user from 
other signal sources. 

Feature 
Detector 

Cyclic spectrum density 
function of the received signal 

• More robust against 
noise and better 
detection in low-
SNR than energy 
detector. 

• Can distinguish 
among different 
types of 
transmissions and 
primary systems. 

• Specific features must 
be associated with 
primary signals. 

• Higher complexity 
than energy detector. 

Matched 
Filtering 

Projection of the received 
signal in the direction of the 
known primary signal 

• More robust against 
noise and better 
detection in low-
SNR than feature 
detector. 

• Require fewer signal 
samples to achieve 
good detection. 

• Require prior 
information about 
certain waveform 
patterns of primary 
signals. 

• High complexity, 
mostly unpractical. 

To further increase the spectrum awareness of a cognitive system (radio or radar), it has been proposed to use 
a Radio Environmental Map (REM). The idea behind the REM is to store and process a variety of data to 
extract all the available information on transmitter locations, propagation conditions, and spectrum usage in 
space and time. Exploiting the REM, the radar could become aware of the surrounding electromagnetic 
environment, and then intelligently use the transmit bandwidth and probing waveforms. 

3.5 CONCLUSIONS 

The cognitive radar paradigm has been treated from an architectural point of view. Advances have been 
achieved towards the design of cognitive radar systems, as proved by the many conference and journal 
papers published over the last decade. Nevertheless, implementation of its principle both at the hardware and 
software level represents a gap to be filled. For instance, in active radars, cognition requires waveforms and 
circuits to be reconfigurable and optimizable in real time. Initial progress has been made in each of these two 
fields [57], [58], but a fully optimized solution that includes all the important aspects of radar circuitry has 
not yet been presented [59] even though some attempts to consider the radar as a holistic system 
(hardware-in-the-loop) have been presented, for instance, Stinco et al., 2016 [60]. This point of view  
is highlighted by the proposed SWOT analysis in Table 3-2. 
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Table 3-2: SWOT Analysis. 

STRENGTHS 

 Identification of the spectrum availability (environment 
sensing). 

 Statistically characterization of the behaviour of the 
electro-magnetic environment. 

 Adjustment of the transmitted waveform on the fly 
according to the spectrum availability and the 
surrounding environment. 

 Choice of the most apt signal processing technique at 
receiver according to the spectrum availability and 
mission priority (e.g., compressive sensing or adaptive 
filter techniques). 

 Dynamic resource management. 

WEAKNESSES 

• The implementation of the whole 
cognitive process requires a high 
computational cost. 

• The electro-magnetic environment 
characterization is currently based 
mostly upon statistical rules. 

• A large and heterogeneous dataset 
are needed to meet a consistent 
memory.  

OPPORTUNITIES 

 Flexibility, scalability and intelligence. 
 Ability to statistically estimate the environmental changes 

exploiting the process of learning from experience. 

 Ability to guarantee a good trade-off between 
performance and environment constraints (spectrum 
availability, interference, clutter). 

THREATS 

• Technology may not be ready to 
guarantee the desired level of 
intelligence/adaptability for specific 
applications. 

• The TRL of this system is at the 
moment very low. 
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Chapter 4 – TECHNIQUES AND APPROACHES 

4.1 PERCEPTION-ACTION CYCLE AND FEEDBACK 

To provide a common starting point for implementing diverse cognitive radar tasks, the Fully Adaptive Radar 
(FAR) framework is a general model for the Perception-Action Cycle (PAC) [61], [62]. Figure 4-1 illustrates 
the general FAR framework organized into distinct perceptual and executive processors. It also shows the 
sensor hardware as a separate block that interacts directly with the environment. This structure is organized 
differently but has the same functionality as previous implementations of the FAR framework [62], [63], [64]. 
The current dual-processor construction was chosen because it better aligns with Fuster’s neuropsychological 
cognitive structure [65], the JDL fusion levels [66], and the various cognitive radar architectures [38], [44], 
[67], [68], [69].  

 

Figure 4-1: General Block Diagram of the FAR Framework for Cognition [61]. 

The framework in Figure 4-1 emulates the PAC through communication between the two processors. The aim 
of the radar is to adapt its perception parameters, 𝛉𝛉, to estimate the value of the target state 𝐱𝐱𝑘𝑘 while meeting 
a series of objectives. At time k, the perceptual processor receives information about the environment in the 
form of measurement 𝐳𝐳𝑘𝑘 and uses the information to form a perception of the environment. Here, the 
perception is the posterior density 𝑓𝑓+(𝐱𝐱𝑘𝑘|𝐙𝐙𝑘𝑘), where 𝐙𝐙𝑘𝑘 = {𝐳𝐳1, … , 𝐳𝐳𝑘𝑘} is the measurement history up to time 
k. The executive processor is responsible for the action portion of the PAC, selection of the next value of 𝛉𝛉 in 
response to the latest perceptions. The new 𝛉𝛉 is then passed back to the perceptual processor, completing one 
iteration of the PAC. The hardware layer also receives 𝛉𝛉𝑘𝑘 and forms measurement 𝐳𝐳𝑘𝑘 based on the perception 
parameters, but the PAC arises from the interaction between the two processors, not the hardware. Some PACs 
may not interface directly with hardware at all.  

The perceptual processor is characterized by its measurement likelihood function, 𝑓𝑓(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘;𝛉𝛉𝑘𝑘), its 
measurement cost function, 𝐶𝐶𝑀𝑀(𝛉𝛉𝑘𝑘), and its performance cost function 𝐶𝐶𝑃𝑃(𝐱𝐱�𝑘𝑘 ,𝛉𝛉𝑘𝑘). The measurement likelihood 
defines how the measurements 𝐳𝐳𝑘𝑘 are related to the target state 𝐱𝐱𝑘𝑘, and is instrumental in determining how the 
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measurements are converted into perceptions of the scene. The measurements may or may not be conventional 
radar measurements, such as range-Doppler surfaces, depending on the nature of the PAC. The measurements 
may be more abstracted if the perceptual processor does not interface directly with receiver hardware.  
The measurement cost function reflects the relative cost of obtaining a measurement with parameters 𝛉𝛉𝑘𝑘.  
The performance cost function quantifies how well the system is performing its tasks based on the estimate  
of 𝐱𝐱𝑘𝑘, denoted 𝐱𝐱�𝑘𝑘, and 𝛉𝛉𝑘𝑘. The perceptual processor determines the next estimate 𝐱𝐱�𝑘𝑘 by minimizing the 
performance cost function given the current measurement 𝐳𝐳𝑘𝑘 obtained with parameters 𝛉𝛉𝑘𝑘 . 

The executive processor is characterized by its executive optimization cost function, 𝐶𝐶𝐸𝐸(𝒙𝒙�𝑘𝑘 ,𝜽𝜽𝑘𝑘), and the 
formulation of the executive optimization method itself. The executive processor determines the perception 
parameters 𝛉𝛉𝑘𝑘 by minimizing the executive optimization cost function, which is a combination of the 
measurement and performance cost functions, with respect to 𝛉𝛉𝑘𝑘 . 

The measurement, performance, and executive cost functions are scalar functions that are designed to balance 
multiple objectives for system performance and multiple preferences for system operation. Designing cost 
functions is somewhat subjective, however in Mitchell et al., 2018 [70], some strategies are developed for 
defining cost functions for FAR following approaches common in the multi-objective optimization literature. 
The measurement objective function might include preferred parameter settings and constraints on parameters. 
The performance objective function might include multiple performance objectives, such as position and 
velocity tracking error standard deviations. The individual objective functions are then transformed, weighted, 
and combined to yield the scalar cost functions. The particular formulations of the perceptual and executive 
optimization problems and their solution methodologies then depends on the nature of the cost and objective 
functions; the optimization choice may accommodate possible nonlinear or non-differentiable functions or the 
use of particular solvers. 

4.2 METRICS FOR OPTIMIZATION 

A critical element of cognitive radar is an optimization problem in which the next set of radar parameters is 
chosen to achieve a set of system goals. Articulating the system goals in a mathematical form suitable for 
optimization is thus critical to the operation of a cognitive radar system. As the number of radar system tasks 
and the number of parameters available for adaptation grow, this becomes increasingly difficult. 
In Mitchell et al., 2018 [70], a generalized approach to cognitive radar optimization design is developed by 
treating cognitive radar as a Multiple-Objective Optimization (MOO) problem. This optimization design 
methodology results in objective-based cognitive radar cost functions which are not specific to any single radar 
application. 

Most of the early cognitive radars found in literature are implemented using bespoke structures designed 
specifically to yield a desired adaptive behavior. To provide a common starting point for implementing diverse 
cognitive radar tasks, the Fully Adaptive Radar (FAR) framework is a general model for the perception-action 
cycle, as outlined by Bell et al. [62]. The adaptive behavior produced by the FAR framework depends on the 
specifics of its constituent cost functions. Examples of these cost functions have been derived for waveform 
parameter optimization [64], [71], sensor resource management [62], [63], [72] and multiple target tracking 
[73]. Despite the generalized architecture, the cost functions and optimizations themselves still varied greatly 
between applications, and the existing FAR framework literature offers little guidance in designing functions 
suitable for problems outside the target tracking domain. Furthermore, most of the available examples focus 
on optimizing processor performance without regard to the relative cost of different radar sensor settings. 

While they have not been applied using the FAR framework, cost functions have been explored in the context 
of radar resource management in general. Of particular note is the Quality of Service (QoS) framework for 
resource management. Originally formulated for managing computer networks and multimedia systems, this 
approach looks to plan and allocate system resources given a set of disparate QoS measures and relevant 
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resource constraints [74], [75]. QoS has since been applied to the problem of radar resource management, with 
demonstrations successfully managing multiple tracks [76], balancing search and tracking radar tasks [38] and 
coordinating resource management within a radar network [77]. However, the QoS resource allocation 
problem is NP-hard, and requires the use of specialized algorithms such as Q-RAM to solve [38], [76]. 

Some have sought to manage system resources based higher level mission objectives instead of task level 
objectives. Rather than focus on minimizing the uncertainty in the target tracks, Katsilieris propose sensors which 
choose actions with the aim of reducing uncertainty regarding the targets’ threat levels [78]. 
In de Groot et al., 2018 [79], the authors link the adaptable parameters directly to the probability of 
mission-success, as defined by the end-user. Each action is then judged by its impact on the overall mission, 
rather than specific quality measures.  

In many cases, information theoretic measures have also been optimized in place of task-based cost functions 
[80], [81], [82], [83], [84]. These measures allow the value of disparate tasks to be compared directly based 
upon the expected information gained by performing each task. However, the final values of information 
theoretic measures are difficult for the end-user to understand and attribute to specific operational goals [85]. 
Additionally, Kreucher finds that task-based methods do outperform information theoretic based approaches 
at their tasks of interest [86]. 

In Mitchell, et al. 2018 [70], a generalized cognitive radar cost function design methodology inspired by the 
field of multi-objective optimization is developed. The related field of Multi-Criteria Decision Analysis 
(MCDA) has been successfully applied to radar target tracking in the past [88], but the MCDA metric was 
used as a performance metric by which to compare other resource management algorithms. In Mitchell, et al. 
2018 [70], the focus is on real-time optimization based on the MOO inspired costs themselves. The cost 
functions are applied to enable waveform adaptation while tracking a single target. Cost functions based on 
different high-level radar objectives are implemented to demonstrate how the general cost functions may be 
instantiated to suit specific applications. Both simulated and real-time experimental results are provided. The 
simulations confirm the direct impact of changing the cost functions while observing identical target scenes, 
and the experimental results highlight that the proposed cognitive optimization may be implemented in 
real-time systems.  

4.3 WAVEFORM OPTIMIZATION 

Waveform optimization is one of the key features of a cognitive radar equipped with fully adaptive transmitters 
and receivers. I waveform optimization one may be able to choose waveforms from a library or codebook of 
pre-defined waveforms. Alternatively, the waveform is a continuous argument in the optimization that can 
take arbitrary value that maximizes or minimizes the employed objective function while satisfying all the 
imposed constraints.  

Waveforms may be optimized for a specific radar task or multiple tasks simultaneously. Situational awareness 
is important side information for the optimization task. For example, target tracking task can take advantage 
of the fact that different targets scatter electromagnetic energy in a different way. The radar can match its 
transmitted waveform to the target response, including channel gain, target range profile and RCS, of the object 
it is tracking. This way the radar receives maximum energy reflected off the target. Waveform design is 
typically modeled as an optimization problem with an objective function that needs to be maximized or 
minimized under some constraints. Waveform optimization may consider using all available degrees of 
freedom in transmitters or receivers in the process of finding the best solution. Exploiting diversity (e.g., spatial 
diversity in multiantenna and multistatic radar sets, beampatterns, frequency, time, code, polarization) is in the 
core of waveform optimization since the degrees of freedom in optimization are typically associated with 
different sources of diversity. An example of multistatic radar system where multiple waveforms are used 
simultaneously is illustrated in Figure 4-2. 
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Figure 4-2: Multistatic Radar Operating in a Cooperative Mode. Transmitters and receivers can 
be spatially distributed to illuminate and observe the target from many different directions 
and provide spatial diversity. 

The employed objective function may stem from information theoretical criteria such as Mutual Information 
(MI) or Kullback-Leibler divergence. These criteria are not necessarily directly connected to performance in 
a particular radar task. Statistical performance criterion as an objective can be directly associated with a radars 
task, for example Cramer-Rao Lower Bound for target parameter estimation, Neyman-Pearson or Bayes 
criterion for target detection or minimum Mean Square Error (MSE) for target tracking. As an intuitive 
example, one could design a waveform for target detection purposes using the Neyman-Pearson strategy while 
taking advantage of feedback from the receiver in terms of channel gains and levels of intentional and 
unintentional interference (SINR value). Moreover, the constraints could ensure that the ambiguity function is 
sufficiently close to the ideal thumbtack ambiguity shape, the waveforms have close to constant modulus 
property for efficient use of amplifiers, and the total or per antenna power constraints are satisfied. The 
employed radar codes, pre-coders at transmitters and de-coders at receivers, power levels, antenna 
beampatterns, antenna selection, frequency subbands and polarization could be selected or adaptively adjusted 
in order to find an optimal solution for the employed objective function. Furthermore, the radar receiver could 
be optimized to cancel jammers, have low Peak Sidelobe Levels (PSL) and low Peak Cross Correlation (PCC) 
over all Doppler frequencies and delays, or to maximize Signal to Interference and Noise Ratio (SINR) at the 
receivers. Improving SINR has a direct positive impact on the performance on most radar tasks. An example 
of such receiver optimization is the mismatched filter design by Aittomäki and Koivunen [88]. 

Waveform optimization may take place in different radar tasks, target scenarios and propagation environments. 
In the case of target tracking, the radar may constantly adjust its operational parameters, like transmitted 
waveform, Pulse Repetition Frequency (PRF), or pulse duration for example, in order to achieve a desired 
level of performance. In the case of plain surveillance, the radar can use a different update rate for a target at 
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the edge of the detection range, moving away from the radar, compared to a fast adversary target approaching 
the radar in close proximity. The PRF is one parameter adjusted in the latter example. In the case of a weapon 
system radar, the target would be tracked at a tighter loop.  

The form of cognition that just adjust physical radio transmitter parameters can be considered a low-level 
cognition. Cognition can take place at all the levels of the radar system from physical radio to mission planning 
and control. This is similar to cognition in communications in all OSI layers. Another form of radar adaptation 
and cognition is related to the decision-making task in a dynamic, constantly evolving operational 
environment. This requires a far greater complexity and sophistication than the above described form of 
cognition of mainly adjusting radio operating parameters. It aims at augmenting intelligent human behavior or 
even achieving a fully automated operation instead of a narrowly focused, well-defined radio parameter 
adaptation. Such form of cognition can be considered a high-level cognition. 

Waveform optimization for target tracking task has been addressed in many publications. Many of the 
waveform optimization methods require awareness on clutter frequency response, target velocity, and general 
additive noise. Waveform optimization may focus on several areas of uncertainty, for example moving targets, 
as well as intentional and unintentional interference. The challenges posed by moving targets are highlighted 
in Rufang et al., 2015 [89], where the optimal waveform design algorithm maximizing the SNR is tested for 
range-Doppler resolution performance. It is demonstrated that the resulting waveform has a poor ambiguity 
function. In particular, the resulting waveform has a lower Doppler resolution than comparable Linear 
Frequency Modulated (LFM) or Barker code waveforms, as well as a highly ambiguous delay performance.  
It is concluded by Rufang et al., [89] that ambiguity function should be considered when designing cognitive 
radar waveforms. In Nieh et al, 2014 [90], the focus is to design the optimal waveform for detection and 
identification of moving targets. A closed-loop scheme to determine such optimal waveform for the case of an 
extended moving target is presented by Nieh et al, [90]. The scheme employs range-Doppler maps obtained 
from the measurements in the optimization of the future transmitted waveforms. The optimization is based on 
the Probability Weighted Eigenwaveform (PWE) technique. The approach in Nieh et al, 2014 [90] is further 
developed in Nieh et al., 2015 [91] for the detection of multiple extended moving targets. In both papers,  
a Range-Doppler Map (RDM) is employed in order to identify the target type. 

Another waveform optimization example is dealing with a scenario where a jammer becomes active. The radar 
should sense the jammer and estimate its parameters including angle of arrival, employed waveform and 
bandwidth. Consequently, it could employ various adaptation methods or countermeasures to mitigate it or 
use its power and other radar system resources in such way that the jamming becomes ineffective.  

4.4 INFORMATION THEORETIC METHODS IN WAVEFORM DESIGN 

Information theory has been used in radar waveform design since the pioneering works of Woodward [92] 
and Bell [93]. Modern cognitive radar systems with fully adaptive transmitters and receivers obviously have 
more degrees of freedom that can be used as optimization variable and consequently a higher dimensional 
design space. Several different information theoretic criteria have been used for radar waveform design and 
optimization. Typically maximizing Mutual Information (MI) or minimizing or maximizing some information 
theoretic divergence criterion is used as an objective function. Such divergence criteria include relative 
entropy, also known as Kullback-Leibler (KL) divergence, J-divergence [94], [95], [96], and Bhattacharyya 
distance. For example, divergence between the two densities under hypotheses H0 and H1 may be maximized 
in detector design [96], [97]. According to Stein’s lemma, for a fixed probability of false alarm or a fixed 
probability of detection, the maximization of the corresponding KL divergence D(f0||f1) or D(f1||f0) where f0 and 
f1 denote the densities under hypotheses H0 and H1 respectively) leads to an asymptotic maximization of the 
probability of detection or minimization of the probability of false alarm respectively [96]. The Bhattacharyya 
distance simultaneously provides an upper bound on the probability of false alarm and a lower bound on the 
detection probability [98]. It is claimed by Laz [99] that the Bhattacharyya distance is a better optimization 
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criterion than the J-divergence for detection performance. It has been proven by Zheng et al. [100] that 
maximizing the J-divergence (which is in fact the sum of the two KL divergences – D(f0||f1) and D(f1||f0)) is 
equivalent to maximizing the SINR. Dynamic power allocation among transmitters in a distributed MIMO 
radar system is found using different information theoretic divergence criteria by Aittomäki et al. [101]. 
The allocation is optimized in order to ensure a desired detection performance level in every part of a specified 
surveillance volume. 

Target characterization task is addressed for cognitive radars using information theoretic criterion [102] in the 
optimization, in particular Mutual Information (MI). MI maximization is employed as an objective to find an 
optimal waveform that allows extracting information from multiple targets, both in the presence and absence 
of clutter. The optimization methods in Romero et al., 2011 [102], Wang et al., 2016 [103], and Romero et al. 
2009 [104] make use of prior knowledge on second order statistics of the channel, which contains the clutter, 
target and noise. This prior knowledge is the situational awareness that the cognitive radar needs before the 
transmitter or receiver optimization can be employed. The solutions to the optimization problem are optimal 
power spectral densities of the transmitted waveform based on the power spectral densities of the targets and 
clutter. In many cases, the optimization leads to water filling solutions where power and other resources are 
allocated to degrees of freedom such as frequencies, channels or antennas where the signal experiences very 
little attenuation or interference. For example, for the water filling solutions by Wang et al. [103], a trade-off 
between the power spectral densities of the targets and clutter is observed. 

A MI based waveform design strategy has been proposed for a cognitive radar network. The MI minimization 
between the subsequent radar returns is applied in order to ensure a maximization of information that is 
extracted from the target. This facilitates learning the environment and choosing an appropriate operational 
mode. A positioning algorithm could then use this information to generate more accurate location estimates. 
Numerical results show improved detection performance, as well as better delay-Doppler resolution. It can be 
observed using ambiguity function plots. Mutual Information based waveform design for target detection task 
in a spectrum sharing and radar-communications coexistence scenario has also been proposed [105]. It is 
described in more detail in the context of spectrum sharing in cognitive radars.  

Mutual Information based criteria have been applied to MIMO radar waveform design by Chen et al. [106], 
and Yang et al. [107]. Waveform optimization for MIMO radar in colored noise based on maximizing MI is 
proposed by Tang et al. [108]. The obtained solutions are power allocations given by a water filling solution. 
It is demonstrated that power should be allocated in the direction where the target is present, and the energy of 
the noise is the smallest. It means that the optimal waveform can preserve the energy of the target signal and 
suppress the noise simultaneously. Awareness on the radar channel and target is needed before employing the 
optimization methods in Tang et al., 2010 [108]. 

An information theoretic approach to design radar waveforms suitable for simultaneously estimating and 
tracking parameters of multiple extended targets is proposed by Leshem et al., [109]. Several different design 
criteria are introduced. For example, a weighted linear sum of the MIs between target radar signatures and the 
corresponding received beams is employed. A design criterion that weights various targets according to their 
priorities is also considered. A generalized criterion for designing multiple waveforms under a joint power 
constraint when beamforming is used both at the transmitter and the receiver is considered as well. 

4.5 RADAR RESOURCE MANAGEMENT 

The operation of an Electronically-Scanned Array (ESA) is highly flexible in that a range of control parameters 
can be reconfigured nearly instantaneously. Consequently, an ESA is capable of executing numerous tasks 
supporting multiple functions, multiplexed in time and angle. However, this flexibility creates a challenging 
operation and resources management problem, in that a new radar dwell complete with beam direction and 
transmit waveform must be chosen within the time taken to execute the previous radar dwell. As controlling the 
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operation of an ESA is beyond the capability of a human operator, it is desirable to automate the cognitive 
processes of a human operator in the system. The extent to which cognition can be implemented in management 
techniques is emerging as key performance factors for the next generation of multifunction radar systems. 

4.5.1 Management Components 
The core radar management components are priority assignment, task management and scheduling: 

• Priority Assignment – The priority assignment module assigns a priority value to each radar task, 
which represents the task’s entitlement to antenna usage relative to other tasks. Priorities can be 
defined by the operator based on the operational context and needs, or automatically for certain tasks, 
such as weapon guidance. 

• Task Management – The task manager is responsible for selecting control parameters for each radar 
task-based on its priority and other task-specific requirements. Examples of control parameters 
include the next time to execute a radar dwell and the corresponding transmit waveform to use. The 
task manager issues job requests to the scheduler, based on the selected control parameters for the task 
and its priority. 

• Scheduler – The scheduler is responsible for creating a timeline of jobs from the multiple job requests. 
Time conflicts between the job requests can be resolved using the task priority. 

These core components are described in the following sections. 

4.5.2 Priority Assignment 
Tasks in the radar can have differing priority, to reflect the fact that different tasks have differing importance 
or differing sensitivity to scheduling delays. When the radar scheduler is under-loaded priority has little 
influence, however, when the radar scheduler is overloaded, the priority determines which jobs are not 
executed by the radar. Existing approaches to priority assignment are based on rule sets or alternatively using 
fuzzy logic. The simplest approach to priority assignment is to decide priority based on the function to which 
the task/job belongs. This reflects the fact that some functions, such as track maintenance, are more mission 
critical than other functions, such as calibration. Alternatively, priority can be assigned on situation dependent 
rules sets or fuzzy logic, to enable a higher fidelity priority assignment. 

4.5.3 Rule-Based Task Management 
Traditionally, control parameters for radar tasks have been fixed at design time. Presently, radar systems with 
an ESA antenna use a limited set of rules to enable adaption to the encountered scenario. Typical rules for 
operation depend on the radar function: 

Search. In search management it is possible to configure the search area, the spacing between search beams, the 
search lattice type, the revisit interval and dwell time in a beam position as well as the modulated signal used 
(e.g., frequency, pulse repetition frequency, pulse modulation, etc.). Generally, the beam spacing and search 
lattice are selected to cover the required search volume evenly. Studies have shown that a beam spacing around 
0.85 3dB beamwidths gives a very flat optimum in terms of the cumulative detection probability in overlapping 
beams. Potentially the search revisit interval can be varied for each beam position during runtime, however, 
typical rules choose a revisit interval time determined by either a required search reaction time or based on the 
revisit time that result from a required dwell time (and SNR) and number of beam positions. The dwell length is 
selected to give a required detection range, while avoiding range and Doppler cell migration. Sets of PRFs are 
selected in order to provide enough cumulative detection probability in multiple bursts to cover the desired search 
space without ambiguities within the required search space. 
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Alert Confirm. Simple rules can also design to control the alert confirm process, whereby the radar executes 
a rapid `look-back’ confirmation dwell to determine whether a search detection was due to the presence of a 
target or a random false alarm. The rapid nature of the look tries to exploit a correlated radar cross section 
fluctuation between the search and confirm looks. 

Tracking. In additional to tracking targets using measurements from search, an ESA can also schedule 
dedicated radar dwells that are optimized to the target, a process that is known as active tracking. If the target 
is actively tracked, the track manager must also decide the revisit interval time as well as the transmit waveform 
to use. Track management can be performed with simple rules, for example the targets chosen to be actively 
tracked are based on priority, the revisit interval can be based on priority and the number of pulses based on 
off-boresight scan angle. A significant advance on these simple approaches came in the form of adaptive 
tracking, whereby the revisit interval is adapted based on the target manoeuvres and the number of pulses is 
adapted based on the estimated radar cross section and distance. Through the benchmark problems, these 
methods were shown to minimize the resource required for tracking while also preventing track loss. This 
work is clearly an implementation of a perception-action cycle. 

4.5.4 Scheduling 
The scheduler is responsible for creating a transmittable timeline of jobs from multiple potentially conflicting 
job requests. Each job request consists of the job priority, job duration 𝜏𝜏𝑐𝑐 and the job timing constraints. The 
job timing constraints are the earliest time 𝑡𝑡𝑒𝑒, the desired time 𝑡𝑡𝑑𝑑 and the latest time 𝑡𝑡𝑙𝑙 that the job can be 
scheduled. The objective of the scheduler is to maximize the radar time utilization, while satisfying the job 
request constraints. Because the scheduler operates on a lower architectural level with a faster reaction time, it 
is typically based on queues or basic rules. Since it simply solves the juggling of timing constraints, the 
application of cognition is probably rather limited. 

Queue Schedulers. Queue-based schedulers operate by selecting the next best job from a queue or set of 
queues. The next best job is decided upon an ordered list of the jobs that are eligible to be executed. Such a list 
can be ordered based on timing constraints, such as earliest deadline first, desired time first or earliest time 
first. Additionally, a queue-based scheduler will respect the priority of jobs, such that high priority jobs 
experience less scheduling delay. 

Frame-Based Schedulers. Frame-based schedulers generate a timeline by arranging jobs in a time allocation 
slot of fixed duration. Whilst the previous allocation frame is being executed, the next allocation frame is being 
calculated. For a given measure of optimality an exhaustive search could be used, but often heuristics are used 
to guide the placing of jobs within the allocation frame. Generally, as frame-based schedulers optimize the 
placing of the job in the allocation frame, they can generate good quality schedules that are better than 
queue-based schedulers. However, since they are computationally much more complex, queue schedulers are 
generally preferred. 

4.5.5 Attention and Effective Radar Resource Management 
Radar Resources Management (RRM) addresses the two key problems of deciding how to allocate finite radar 
resource between numerous radar tasks, as well as deciding how to optimize the selection of control parameters 
for each individual radar task. Conventional radar resources management approaches optimize individual radar 
task control parameter selection using rules and heuristics, which are tuned by the system designer  
(as described previously). This optimization is done with an implicit assumption that a set of successful tasks 
leads to a successful mission. In contrast, effective resources management aims to manage the radar resource 
with respect to the mission objectives. This represents a shift of a cognitive process from the operator to the 
radar system, as the attention of the radar is focused on mission objectives. This section describes how quality 
of service techniques can be applied to achieve effective resources management. 
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4.6 ANTICIPATION AND STOCHASTIC CONTROL 

A Partially Observable Markov Decision Process (POMDP) is a framework for sequential decision making on 
the selection of actions that trigger stochastic transitions in a system state that is only partially observable 
through noisy measurements. In radar applications the state is the sensed environment and the actions 
controlled by the POMDP can be measurement times for radar tasks and the corresponding waveforms. As the 
system state is not fully observable, the controller constructs a belief state, which is a probability distribution 
on the state space. This belief state can be thought of as a perception of the memory of all previous 
measurements. Actions, to schedule measurements and waveforms, are taken based on the belief state, but also 
based on the expected evolution of the system state over a time horizon in the future. By taking actions that 
consider the future system evolution, the radar is able to act with anticipation.  

4.6.1 Partially Observable Markov Decision Processes 
A POMDP consists of the following components: 

State Space – The state space describes the range of possible states of the system. For radar tracking the 
state can be the true positions of the target and the radar platform.  

Action Space – The action space describes the range of possible actions that can be taken. The action can 
be the scheduling of a measurement at a certain time with a corresponding waveform. 

State Transition Probability – The state transition probability function gives the probability of 
transitioning to a specific state at the next time step from a specific state at the current time step, when a 
specific action is taken. 

Observation Space – The observation space describes the range of possible measurements that can be 
observed. 

Observation Likelihood Function – The observation or measurement likelihood function describes the 
probability of observing a measurement given that the system is in a certain state. 

Reward Function – The reward function gives the reward received when an action is taken when the 
system is in a certain state. This reward must reflect the radar’s sensing objective. 

Once the above components have been defined, the objective of the POMDP is to use the optimal policy 𝜋𝜋𝑡𝑡∗ 
that gives the action that maximizes the Q-Value 𝑄𝑄𝐻𝐻: 

𝜋𝜋𝑡𝑡∗(𝑏𝑏𝑡𝑡) = arg max
𝑎𝑎

𝑄𝑄𝐻𝐻(𝑏𝑏𝑡𝑡,𝑎𝑎) (4-1) 

where 𝑏𝑏𝑡𝑡 is the belief state at the current time t, 𝑎𝑎 is a candidate action and the Q-value: 

𝑄𝑄𝐻𝐻(𝑏𝑏𝑡𝑡 ,𝑎𝑎)  =  𝑅𝑅(𝑏𝑏𝑡𝑡 ,𝑎𝑎)  +  𝐸𝐸[ 𝑉𝑉𝐻𝐻−1∗ (𝑏𝑏𝑡𝑡+1)|𝑏𝑏𝑡𝑡,𝑎𝑎] (4-2) 

where 𝑅𝑅(𝑏𝑏𝑡𝑡 ,𝑎𝑎) is reward at the current time step and 𝐸𝐸[ 𝑉𝑉𝐻𝐻−1∗ (𝑏𝑏𝑡𝑡+1)|𝑏𝑏𝑡𝑡 ,𝑎𝑎] is the expected reward over future 
time steps. 

The solution to the POMDP attempts to maximize a mix of the current reward with the possible predicted 
rewards. Therefore, actions are taken based on all the knowledge on the system that is available at the current 
time while also planning in the future for rewards that may only be achievable many time steps in the future. 
Unfortunately, this Q-value is almost impossible to calculate exactly, which necessitates the use of 
approximate methods. 
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4.6.2 Cognitive Processes 
The POMDP formulation incorporates the following cognitive processes: 

Memory and Perception – The concept of memory and perception is central to the POMDP, as the belief 
state represents the interpretation of the partially observable system state. This perception is clearly based 
on memory, as is conditioned on the entire action-measurement history. 

Decision Making – Decision making to select actions is the core task of a POMDP. The best action is 
sought based on the memory of previous actions and measurements, and the perception of the partially 
observable system state. 

Anticipation – By evaluating the expected rewards over a future time horizon, a POMDP selects actions 
based on how the system state is anticipated to evolve in the future. The following two cases demonstrate 
the differentiation between adaptation and anticipation: 

• Case 1 – Time horizon H = 1: The POMDP objective simplifies to the reward that is achievable from 
the current time step, and therefore based only on the belief state at the current time. Action selection 
based only on the current belief state can be thought of as adaptive. 

• Case 2 – Time horizon H>>1: The POMDP objective is comprised of a trajectory of future actions 
and states, therefore the POMDP reasons about the rewards it anticipates to receive in the future. This 
anticipation of future rewards can be considered a cognitive process. 

The effect of the time horizon in a POMDP is widely discussed in the sensor management literature as myopic 
(considering only the present) or non-myopic (considering also the future) management. 

4.6.3 Anticipative Target Tracking Example 
In this example, the objective is for the controller to select the time interval between radar measurements for 
a target track, such that a desired estimation error is achieved and track loss is prevented with the minimum 
resource usage. An ESA antenna is assumed, such that measurements are made by steering the beam to the 
estimated target position. As a scenario may dictate that measurements provide different amounts of 
information, the anticipated future development of the situation must be taken into account. This is done with 
a rollout-based approach. 

The scenario consists of an airborne radar platform and a target with nearly constant velocity motion at 
200 m/s, as illustrated in Figure 4-3. In the scenario, the target is unobservable during a certain period of time.  
This non-observability could be due to a number of reasons, such as a blockage to the line of sight, a jammer, 
or the unavailability of a multifunction radar when a different non-interruptible function is executed. It is 
assumed that the borders of the unobservable region are known. 

Figure 4-4 plots the number of measurements per second that are executed by adaptive tracking and the 
POMDP for a 2 km occlusion. It can be seen that both methods use a high number of measurements at the start 
of the simulation to initialise the track. It can also be seen that the POMDP anticipates the occlusion by 
scheduling an increased number of measurements just before the target enters the occluded region. 
Consequently, the POMDP is able to maintain the tracks during the occlusion and continue tracking once the 
target is again observable. In contrast, adaptive tracking does not anticipate the occlusion and therefore tracks 
are lost during the occlusion, which must then undergo a resource expensive track reacquisition when the target 
is again observable. 

In Figure 4-5, the probability of a track loss is shown, evaluated over 100 Monte Carlo runs. It can be seen that 
the probability of a track loss is significantly reduced by the rollout-based method, because it anticipates the 
occlusion and therefore schedules a number of additional measurements shortly before the target is occluded. 
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Figure 4-3: Example Scenario. 

 

Figure 4-4: Number of Measurements per Second Executed by Adaptive Tracking and the 
POMDP for a 2 km Occlusion. 
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Figure 4-5: Probability of Loss of Track. 

4.7 BIOLOGICALLY-INSPIRED WIDEBAND TARGET LOCALISATION 

4.7.1 Introduction 
The natural world contains a great many echolocating species, animals that expertly use acoustic calls to 
enhance perception of their environment. Radar systems are based on the principles of echolocation and use 
electromagnetic radiation to build up a perception of the environment in a similar way to their biological 
counterparts. Yet many radar systems bear only a passing resemblance to the echolocators of the natural world. 
Previous radar work has considered biomimetic and cognitive approaches related to echoic flow [110], [111], 
high range resolution profiles [111], dynamic parameter control [31], and adaptive waveform design [112], 
[27] (for more biologically-inspired radar techniques and approaches see Balleri et al., 2017 [113]). 

This work develops previous work by the same authors [114], [115] and employs similar techniques to work 
carried out in the sonar domain [116].  

Acoustic Echolocation. A large number of natural echolocators, including humans, bats, and dolphins share 
several features across their echolocation calls, despite the very different environments in which they operate. 

Many echolocating species use wide acoustic bandwidths for echolocation; human expert echolocators use 
clicks with frequency content ranging across 2 – 13 kHz [117], bats have shown calls using the 15 – 120 kHz 
range [118], [119], and dolphins have shown calls from 29 – 42 kHz [120]. It is worth noting that these signals 
have a large fractional bandwidth (bandwidth divided by center frequency) of 1.47, 1.56, and 0.36 respectively. 
When considering wideband signals in the radar domain a similar fractional bandwidth may be achieved with 
a 2 – 6 GHz band (fractional bandwidth of 1). Further, a radar signal at 3 GHz has approximately the same 
wavelength as a 3 kHz audio signal, and so we may expect some correspondence with echolocation in the 
scales of objects and environments that may be observed using a radar with comparable wavelengths. 
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There is evidence to suggest that several echolocators use very wide beamwidths to completely illuminate the 
space in front of them. This is true for human echolocators who have beamwidths of 120° [117] and is true for 
certain species of bats which show dynamic control of their echolocation beamwidths in the range of 40 – 120° 

[121]. To achieve a wide area of illumination in a radar system, an antenna with a suitably large beamwidth 
should be used. 

Perhaps the most straightforward commonality between echolocators, is the use of a binaural hearing 
configuration. The use of two ears to perceive sound enables the use of comparative localisation cues described 
in the following section. 

The final, and least tangible feature of all echolocator activity is the cognitive processing used to interpret the 
reflected signals in the brain. It is known that there are certain signal properties (such as frequency and time 
delay) that are extracted from the reflected signals in the lower brain, and that these properties are preserved 
and passed to higher levels of cognitive processing [122], [123]. 

Psychoacoustic Cues. In the field of psychoacoustics there are several well-described cues that are used by 
people when localising the source of a sound [124], [125], [126], [127], [128], [129], [130], [131]; the 
Inter-Aural Level Difference (ILD), the Inter-Aural Time Difference (ITD), and the Binaural Timbre 
Difference (BTD). These cues are the subject of much psychoacoustic research and so only a brief overview 
is given here. All of these cues rely on the binaural nature of hearing, the ILD represents the power difference 
of a signal between the two ears [124], [130], [131]. The ILD finds its closest radar analogue in 
amplitude-comparison monopulse, where the radar compares the magnitude of the received signal at two 
antennas in order to locate a target. 

The ITD represents the Time Difference Of Arrival (TDOA) of a signal at the two ears. As a first order estimate 
this may be considered to be the time difference caused by the geometrical path difference between the sound 
source and the two ears [124], [125], [131], [132]. The closest radar analogue to the ITD is TDOA. 

The third cue, the BTD can be thought of as how the timbre of a sound varies between the two ears. Timbre is 
the quality of a sound and is composed of a complex layering of different tones and overtones, all with different 
magnitudes. Changes in timbre occur based on the direction of arrival of an acoustic signal because the mass 
of the head and the shape of the pinna (the outer ear) introduce direction-dependent filtering of acoustic signals. 
This filtering process can be described by the Head-Related Transfer Function (HRTF), an example from the 
CIPIC HRTF database [133] is shown in Figure 4-6.  

 

Figure 4-6: Head-Related Transfer Function (HRTF) for a Human Left Ear. Subject 003 from the 
CIPIC HRTF Database [133]. 
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This HRTF shows how the power of each frequency component of an audio signal is attenuated which leads 
to an altered timbre of the sound [124], [126], [127], [129]. For instance, at an azimuth angle of 90° the 
attenuation of a sound is at its highest due to the entire mass of the head being between this sound source and 
the left ear. There is no well-established radar analogue to the BTD and the HRTF, but it has been demonstrated 
that a horn antenna demonstrates frequency-dependent filtering of a radar signal, and that this may be exploited 
for target localisation [114] 

4.7.2 Theory 

Table 4-1 defines the mathematical symbols referred to in this section. The subscript i is used throughout and 
can take a value of either 1 or 2 to denote the relevant receiving antenna. 

Table 4-1: Reference for Mathematical Symbols. 

Symbol Definition Unit 

θt Target angle from transmitter to boresight radians 

θ0 Receiver angle from transmitter boresight radians 

f Frequency Hertz 

PRi Signal power received at the ith receiving antenna Watts 

PTx Power fed to the transmitting antenna Watts 

GTx Gain of the transmitting antenna  

GRi Gain of the receiving antenna  

c Speed of light in a vacuum m s-1 

σ Radar Cross Section (RCS) of the target m2 

L Losses  

Figure 4-7 shows, schematically, the relative locations of the target, transmitter, Tx, with phase center located 
at the origin and pair of receivers, R1 and R2 located such that all three antennas are collinear. The receiving 
antennas are separated by a baseline, d. 

By taking inspiration from the ILD and the BTD, we can formulate a power-based angular localisation 
technique [114]. The radar equation for the power at the output of the receiving antenna is formulated as in 
Equation (4-3), with the relevant parameters described in Table 4-1. 
 

 
(4-3) 

For a single measurement, there are several parameters that vary with frequency (including the target RCS 
and the attenuation in space), but providing that the antenna baseline d is sufficiently small d << rtx, then the 
difference in these terms between the two receiving antennas is sufficiently small and is negligible.  

Considering the ratio of received signal powers between R1 and R2 yields Equation (4-4) and the interesting 
result that the signal ratio is independent of target range or reflectivity. 
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(4-4) 

This result means that by having prior information about the ratio of receiver gains across all angles of 
interest and all frequencies in the band it is possible to build up a map function which describes the 
expected result of a measurement in the presence of a target. This map function depends only on the angle 
to the target, and a known system characteristic (the antenna beam patterns) and is given in Equation (4-5), 
where θ represents a set of all possible angles to a target. 

(4-5) 

In this approach the signal ratio is the cue and the map function represents the prior information held by the 
system. What is required is some way of relating the measured signal ratio to the prior information held by the 
system. To do this, the Pearson correlation coefficient is calculated between the signal ratio and the frequency 
profile across each angle in the map function. The Pearson correlation coefficients represent the degree of 
similarity between the measured signal ratio and the expected profile at each candidate angle. By extracting the 
peak from this likelihood profile, the best estimate of the angle to the target is found. 

Figure 4-7: System Geometry for Two Receivers and a Single Transmitter in a Binaural 
Configuration. 

4.7.3 Experiment 
Method: Horn antennas from Q-par Angus (WBH1-18) which satisfied the requirements of a wide 
beamwidth and a wide operational bandwidth were used; Figure 4-8 shows how the antenna beamwidth 
varies across the 2 – 6 GHz frequency band, presenting a broad beam with beamwidths of approximately 
120° at 2 GHz and 60° at 6 GHz. In order to mimic the binaural hearing configuration of echolocators two 
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spatially-separated identical receiving antennas were used, as presented in Section 4.7.2. To complete the 
biological analogy, a third identical antenna was used exclusively for the transmit signal, mimicking the 
central placement of the mouth, the originator of echolocator clicks. 

The antennas were mounted as in Figure 4-9 and were placed with a target in an anechoic chamber. The 
antennas were mounted on a rotation table such that measurements could be made over the desired range 
of angles to the target. The target, a single mirrored sphere of 36 cm diameter, was placed on a plinth to 
raise it into the same plane as the antennas, at a distance of 3 m. 

   

Figure 4-8: Antenna Beampattern Measured Across a 2 – 6 GHz Band, Showing 3 dB 
Beamwidths of Approximately 120° at 2 GHz and 60° at 6 GHz. 

 

Figure 4-9: The Biologically-Inspired Radar Configuration. 

A Vector Network Analyser (4-port Rohde & Schwarz ZVA-67) was used to generate the required band of 
frequencies and was placed on the rotation table below the antennas as shown in Figure 4-10. The rotation 
table used was a Parker 200RT which was suitable to make measurements at 0.5° intervals across a range of 
− 90° to + 90° to the target. 
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The measurements made consisted of s1 and s2 measured across a frequency band of 2 – 6 GHz with a frequency 
step of 10 MHz. In order to minimize the clutter response of the chamber, an initial background measurement 
of the environment (across - 90° to + 90° and across the 2 – 6 GHz band) was made in the absence of the target 
and subtracted from all subsequent measurements made in the presence of a target. 

 

Figure 4-10: The Experimental Setup Using the Vector Network Analyser (ZVA-67) and Three 
Wideband Horn Antennas. 

Results The magnitudes |s1| and |s2| are calculated before dividing the signals which results in the measured 
signal ratio (evaluated over several measurements at different angles) shown in Figure 4-11(a). By the same 
method, the power map function is evaluated and is shown in Figure 4-11(b). Here, the map functions indicate 
a coding of space as a function of frequency by the antennas and show the expected result of measurements in 
the presence of a target at any possible angle. It can be seen that there is good agreement between the spectral 
structures present in the signal ratio and those present in the map function. The most significant disagreement 
occurs further from the boresight direction where noise corrupts the signal and the Signal-to-Noise Ratio 
(SNR) decreases. 

The correlation was then computed using the Pearson correlation coefficient and shown in Figure 4-11(c),  
and the peaks were extracted and used to estimate the angular location of the target for each measurement.  
The error between the estimated angle and the correct angle to the target was then plotted and can be seen in 
Figure 4-11(d). 

This method is capable of localising the target in azimuth with an error of 2.48° over the range 0° ≤ θ ≤ 70°, and 
the phase-based approach locates the target in azimuth with an error of 1.80° over the range 0° ≤ θ ≤ 70°. 
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(a) Signal Ratio Measured in the Presence of Target. (b) Power Map Function. 

 
 

(c) Result of the Pearson Correlation Between Each 
Frequency Profile in the Map Function and the Signal 
Ratio, Using the Power-Based Approach. 

(d) Result for Target Localisation in Azimuth Using the 
Power-Based HRTF Technique. Simulation results for 
10dB SNR are shown in red, and measurement results 
(with variable SNR) are in blue. 

Figure 4-11: Results for the Power-Based Approach. 

4.7.4 Conclusions 
The results presented in the previous section show that the biologically-inspired radar cues allow for good 
angular localisation performance over a wide angle of operation. A ‘rule of thumb’ for monopulse techniques 
is that target angular location accuracy can be performed to approximately 10% of the antenna beamwidth. 
For example, the narrowest beam present in the used band (at 6 GHz) has a beamwidth of approximately 60°, 
and so the rule of thumb would indicate that the angular location accuracy should be only 6° subject to an SNR 
of approximately 15 dB. Both techniques outperform this figure and have a wider range of operation. This 
descriptive result demonstrates that these biologically-inspired techniques can extend the performance and 
range of existing radar methodologies. 

We have shown that it is possible to take inspiration from the biological worlds of echolocation and sound 
localisation in order to present a wideband radar technique that is capable of high accuracy angular localisation 
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over a wide range of angles. By using a wide bandwidth, we have also explored ways to exploit the natural 
coding introduced by antennas over a wide band and have shown that it is possible to use this to enable angular 
target localisation. 

4.8 MACHINE LEARNING APPROACHES FOR RADAR RESOURCE 
MANAGEMENT 

4.8.1 Introduction 
Modern phased array multiple function radar is widely used for both civil and military applications. In this 
type of radar, each function has multiple tasks to be scheduled. Radar Resource Management (RRM) is the 
central unit to coordinate all the tasks for scheduling [134]. The problem has been known as an NP-hard 
problem, thus the complexity could be rather high in order to find the optimal solution. Conventional 
scheduling methods, such as the Earliest Start Time (EST) or the earliest deadline consume very little time, 
but the performance is not desirable. In order to develop better solutions, machine learning approaches, 
including supervised learning and reinforcement learning, are investigated. In this section, we present what we 
have done in machine learning for RRM. Also presented is the simulation result to demonstrate the efficiency 
and effectiveness of machine learning approaches.  

4.8.2 RRM Problem Formulation 
We consider N tasks, to be scheduled in a defined time window with a length L. Assume that the radar system 
is designed for handling N tasks, then the averaged tdwell of these tasks should be L/N to make the total tdwell of 
all the tasks equal to L. To generalize the problem in this report, a normalized time window is used, i.e., L = 1, 
and hence the ideal averaged tdwell = 1/N. Note that in a real situation, the number of the input tasks (Nactual) 
may not be the same as N as it was designed, for instance, in practice the scheduler could be under-loaded if 
Nactual < N, or over loaded if Nactual > N. 

Five parameters of each task are input to the radar scheduler, including the aforementioned tstart, tdwell, and p. 
Two other parameters are the earliest start time (tearliest) and the latest start time (tlatest) that a given task is 
allowed to be executed. All the tasks are firstly passed to the radar for scheduling, then the decision (a schedule, 
or a sequence of all the tasks) is made based on all the received tasks. Finally, part or all of the tasks are 
executed, according to the determined schedule. 

A total cost (J) of a scheduled task sequence is defined as the summation of all the individual task cost C(n) in 
a mean squared error format. The equations are expressed as follows: 

𝐽𝐽 = ∑ 𝐶𝐶(𝑛𝑛)𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑛𝑛=1 , (4-6) 

𝜏𝜏 = |𝑡𝑡𝑒𝑒𝑎𝑎𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡(𝑛𝑛) − 𝑡𝑡𝑒𝑒𝑡𝑡𝑎𝑎𝑒𝑒𝑡𝑡(𝑛𝑛)|, when 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛) < 𝑡𝑡𝑒𝑒𝑡𝑡𝑎𝑎𝑒𝑒𝑡𝑡(𝑛𝑛), 

𝜏𝜏 = |𝑡𝑡𝑙𝑙𝑎𝑎𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡(𝑛𝑛) − 𝑡𝑡𝑒𝑒𝑡𝑡𝑎𝑎𝑒𝑒𝑡𝑡(𝑛𝑛)|, when 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛) ≥ 𝑡𝑡𝑒𝑒𝑡𝑡𝑎𝑎𝑒𝑒𝑡𝑡(𝑛𝑛), 
(4-7) 

𝐶𝐶(𝑛𝑛) = 1
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

�𝑝𝑝(𝑛𝑛) ∙ 𝑡𝑡𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎(𝑛𝑛)−𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠(𝑛𝑛)
𝜏𝜏

�
2
, when 𝑡𝑡𝑒𝑒𝑎𝑎𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡(𝑛𝑛) ≤ 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛) ≤ 𝑡𝑡𝑙𝑙𝑎𝑎𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡(𝑛𝑛), 

= 1
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

�𝑝𝑝(𝑛𝑛) ∙ 𝐶𝐶𝑑𝑑𝑑𝑑�
2
, otherwise, 

(4-8) 

where τ is the time difference between either tearliest or tlatest and the original tstart. Cdp is a scalar that represents 
the task drop penalty.  
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4.8.3 Reinforcement Learning Approach 
The reinforcement learning approach involves two steps. In the first step, the original start time of each task is 
randomly shifted within its time window. The shifted tasks to the EST would result in a solution that is different 
from the solution previously done by the EST. By repeating this random shift then EST scheduling many 
times, a best solution among all could be found [135], [136]. This method is termed a Random Shifted Start 
Time – EST (RSST-EST) scheduling method. The details of this work have been documented in a conference 
paper [137]. 

In the second step, a machine learning radar task scheduling method is incorporated to further enhance 
performance. Since the prior knowledge of the global minimal cost of the task schedule is unavailable, a radar 
scheduler has to find a solution with less cost, which is what reinforcement learning does [138]. The proposed 
method is termed as Reinforcement Learning EST Scheduling (RL-EST) method, in which we establish a 
reward-punishment policy, and the scheduler will decide either staying at the current exploitation or switching 
to a new exploration. When the strategy is to exploit, the gradient descent algorithm is used to attempt to reduce 
the cost [139], and if the cost could be further reduced, a reward would be given, otherwise the punishment 
would be applied. Whenever the reward value becomes zero, the exploitation stops, then the RSST-EST will 
be conducted to explore new solutions, and the reward value will be reset.  

The same process is repeated several times and the schedule yields the minimum cost among all will be 
considered as the final solution of the RL-EST scheduling. In the numerical simulation, we assume that the 
radar is designed for handling N tasks, while the actual number of tasks is varying from 50 % (under-loaded) 
to 200 % (over loaded) of N. The cost of the solution done by the RL-EST is compared with that of the EST 
at each loading rate of every N value, and the results are shown in Figure 4-12(a). It can be seen that the 
proposed RL-EST method has about 1.3 to 10.5 times less cost than the EST, while the computational time is 
between 20 and 90 ms as seen in Figure 4-12(b), so that the method is also considered practical for real radar 
missions. The outcome has been summarized and submitted in Qu et al., 2019 [140]. 

4.8.4 Supervised Learning Approach 
We have also developed heuristic methods as well as the optimal Branch-and-Bound (B&B) technique, an 
as-effective-as-possible approach to solve an NP-hard problem [141]. It is shown that heuristic methods in 
the literature (such as “earliest start time first”) have poor performance, and the B&B algorithm can have 
high computational complexity. We proposed that the radar could use cognitive concepts to reduce the 
complexity of the B&B algorithm by using Machine Learning (ML) methods. ML methods eliminate nodes 
from the search tree without compromising much on the performance. However, the complexity still remains 
rather high. The focus has two aspects:  

1) We consider the practical implementation of the above methods, and  

2) We also introduce new Machine Learning techniques for training the neural networks.  

We proposed to further reduce the complexity using the Monte Carlo Tree Search (MCTS) method [142]. 
Along with using bound and dominance rules to eliminate nodes from the search tree, we used a policy network 
to help to reduce the width of the search. The neural network was trained using labeled data obtained by 
running the B&B method offline on problems with feasible complexity. We showed that the proposed method 
has near-optimal performance, while its computational complexity is orders of magnitude smaller than the 
B&B algorithm. 

We investigate the performance of the proposed method for different number of tasks, N. The number of Monte 
Carlo rollouts is fixed to M = 50. We compare the MCTS, B&B, and the heuristic methods (the task switching 
version of the original EST and ED algorithms) with respect to their ability of scheduling all the tasks without 
dropping any of them. The probability that no task is dropped versus the number of tasks is depicted in 
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Figure 4-13. As can be seen, the performance of the proposed MCTS method is very close to the B&B 
algorithm and significantly better than the heuristic methods. The average numbers of visited nodes of MCST 
and B&B are compared in Table 4-2. MCST is significantly faster than B&B. 

 

Figure 4-12: (a) Ratio of the RL-EST’s Cost to the EST’s, and (b) Time Consumed of the RL-
EST Method, with N = 20 (Blue), N = 50 (Brown), and N = 80 (Green). 

 

Figure 4-13: Comparison of Average Cost and Probability Without Task Dropping. 

Table 4-2: Average Numbers of Visited Nodes Versus the Numbers of Tasks. 

 25 30 35 40 45 50 

MCTS 140 425 1266 3991 11274 25699 

B&B 173 1031 27068 669738 13622348 NA 

4.8.5 Conclusion 
We have applied both reinforcement machine learning and supervised machine learning for the radar resource 
management problem. In the reinforcement learning approach, random time shifts are used for initial solutions, 
following by performance enhancement through reinforcement learning. This approach is sub-optimal in 
nature, but it significantly reduced the computation comparing with that of the optimal solution. Simulation 
results show that the reinforcement learning scheduler is practical in terms of the execution time and the new 
scheduler performs a lot better than either EST or earliest deadline.  



TECHNIQUES AND APPROACHES 

4 - 22 STO-TR-SET-227 

The supervised machine learning approach is based on an optimal B&B and Monte Carlo Tree Search 
algorithms. It is found that the solutions obtained from the offline B&B method can be used to train neural 
networks which can help reduce the complexity of the search. The proposed method has near-optimal 
performance, while the computational complexity is significantly lower than the optimal B&B method. 

Comparing the above two machine learning approaches, the reinforcement learning approach is faster than the 
supervised learning approach; however, the supervised learning approach has better performance, 
near-optimal. Our on-going work focuses on either improving performance of reinforcement learning approach 
or further speeding up the supervised learning approach.  

4.9 PERCEPTION-ACTION CYCLE, SITUATIONAL AWARENESS AND 
FEEDBACK 

4.9.1 Introduction 
Cognition is defined as “the mental action or process of acquiring knowledge and understanding through 
thought, experience, and the senses”. It is a complex process used by humans and animals in order to sense 
their environment and interact with it. The foundation of cognitive radar is based on machine learning and 
adaptive algorithms developed in 1940’s. The term cybernetics was defined in 1948 by Norbert Wiener as “the 
scientific study of control and communication in the animal and the machine”. It refers to intelligent systems 
stemming from operations research, statistics, information theory, control systems and pattern recognition.  

Radars may classified as Traditional Active Radar (TAR), which operates in a feed-forward manner, and Fully 
Adaptive Radar (FAR), which operates in a closed feedback loop connecting the receiver to the transmitter, 
and as Cognitive Radar (CR), which on top of FAR can learn from the observations and develop policies and 
rules for adjusting its behavior in a self-organized manner. A cognitive radar system that tries to emulate the 
way the human brain observes the environment with a goal to bridge the gap between neuroscience and 
engineering. 

There is no unique and universally accepted definition for a cognitive radar system. There are, however,  
a number of definitions that describe the main properties. For example, the definition by Bell is the following: 
“While a fully adaptive radar may employ feedback and use prior knowledge stored in memory, a cognitive 
radar predicts the consequences of actions, performs explicit decision-making, learns from the environment, 
and uses memory to store the learned knowledge”. Another definition generic to all cognitive systems 
operating in radio frequencies is given by the ITU (International Telecommunication Union): “A radio or 
system that senses and is aware of its operational environment and can dynamically , autonomously and 
intelligently adjust its radio operating parameters”. It does not consider any radar specific tasks. Another 
definition is given by the IEEE P686 Standard for Radar Definitions as: “A radar system that in some sense 
displays intelligence, adapting its operation and its processing in response to a changing environment and 
target scene. In comparison to adaptive radar, cognitive radar learns to adapt operating parameters as well 
as processing parameters and may do so over extended time periods.” 

The word cognitive refers to the fact that for agile use of resources such as radar spectrum one should be able 
to get feedback and learn from the radio environment, i.e., create awareness about radio operation and target 
environment. The cognitive radar may then adapt its Degrees of Freedom (DoF) in order to optimize its 
performance. In practice parameters such as power, antenna selection, beampatterns, waveforms, and 
frequency are adjusted dynamically in order to obtain the best achievable performance in the current radar 
tasks. Moreover, multiple tasks may be performed simultaneously and the resource allocation among the tasks 
can be optimized based on the acquired awareness.  
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Essentially, cognitive radar may be presented as a dynamic closed-loop system employing three key steps: 
Sense, Learn, Adapt (SLA). These three stages form a Cognitive Cycle, a key feature in any cognitive system. 
This structure is common to all cognitive systems, including cognitive radios. These steps are performed 
cyclically, as shown in Figure 4-14 in order to satisfy a certain goal in an optimal manner. 

 

Figure 4-14: Cognitive Sense-Learn-Adapt (SLA) Cycle Containing Perception and Action 
Stages. Situational awareness is built and learned in the perception stage and adaptation 
taking into account the awareness takes place the action stage. 

This cycle uses the concept of Perception-Action Cycle (PAC). The system builds situational awareness by 
sensing its environment and constructing a model and learning how the operational environment behaves and 
evolves. This acquired awareness is then used to adapt and optimize the operational parameters of the system 
for a specific goal, task or mission. 

4.9.2 Situational Awareness 
Situational awareness is crucial for cognitive radars. Based on built awareness the radar is able to adapt to the 
evolving operational environment. Most of the cognitive radar literature is focused on the adaptation (action) 
part of the cognitive cycle. In general, it is assumed that the required situational awareness about the state of 
the radar spectrum and target scenario has already been acquired. Building situational awareness requires 
sensing the operational environment or obtaining such information from other collaborating agents. Sensing 
may be active (probing) or passive. One may obtain information about the instantaneous state of radar spectrum 
and targets as well as learn their long-term behavior patterns and dynamics. 

Situational awareness can be presented in many different ways. It may be in the form of: 

• Instantaneous channel state information (channel impulse or frequency responses); 

• Modes (e.g., singular vectors and singular values), rank and statistics of channel matrices; 

• Interference awareness as a function of time, interferences between each transmitter-receiver pair, 
Signal to Interference and Noise Ratios (SINR), Received Signal Strength (RSS) values; 

• Spatial locations and employed frequencies of transmitters and receivers; 

• Spectrum cartography and radio environment maps; and  

• Prior and posterior probability models for spectrum and target related parameters, and state space 
models capturing the dynamic behavior.  

Furthermore, situational awareness may contain information about presence of other signals (jamming, 
interference, other friendly radars), target scenario, target RCS, local geography (terrain map, elevation, radar 
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horizon), local propagation characteristics, atmospheric conditions. All these features are dynamic in a sense 
that they vary depending on the location, time and frequency. Reciprocity of the radio spectrum may also be 
exploited if two-way transmissions take place using the same spectrum resources in quasi-stationary scenarios. 
Because of the dynamic nature of radar operational environments, it is important to understand the coherence 
times, coherence bandwidths and coherence distances in the radio spectrum. These quantities describe how 
rapidly the state of the radar spectrum changes and how long feedback and estimated quantities remain 
sufficiently accurate to be used for adaptation at the transmitter and receivers. Similarly, target RCS looks very 
different depending on the illumination and observation angles and whether monostatic or multistatic radar  
is used. 

Situational awareness may be learned using statistical methods or machine learning. In statistical approach 
either deterministic or stochastic models can be employed. The awareness is then expressed in terms of 
probability models and their parameters, confidences and how they evolve over time. In Bayesian approach 
the prior knowledge on the radar spectrum, channels and targets, for example, is expressed in terms of a priori 
distributions. The acquired observations, feedback and information from other sensors or nodes in the system 
are then used to update the prior information using Bayesian methods. Update quantities include the parameters 
of the probability models and associated uncertainty. Consequently, the situational awareness will be updated 
and learned. Sometimes it may be difficult to define a compact rigorous model for the awareness or express it 
using a well-known probability model. In such cases, machine learning provides powerful tools. The learning 
may be supervised which requires collecting large number of training data followed by a tedious training stage 
where correct labels are given to all data instances. The training data should exhibit all the variations that are 
present in the actual data in the operational stage. Moreover, one needs to ensure that the machine learning 
system is able to generalize, for example, through cross-validation. A widely used example of supervised 
learning is radar target recognition using deep learning and High Resolution Range Profiles (HRRP), see 
Figure 4-15. In unsupervised learning, learning and choosing optimal actions takes place through trial and 
error, by balancing exploration and exploitation stages. 

   

Figure 4-15: Machine Learning Based Target Recognition Using Supervised Deep Learning 
Network, High Resolution Range Profiles (HRRP) and a MIMO Radar Configuration to Acquire 
HRRPs. 
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Feedback from other collaborating agents is extremely valuable in the process of building awareness. If the 
transmitter and receiver are co-located, the use of feedback from the receiver is straightforward. In a distributed 
or multistatic radar system, other cooperating receivers may possess information, for example, about the 
channels and target responses or RCS characteristics, information about the quality of the radar channel  
in different time, frequency and location, level of interference and jamming they are experiencing, which 
signals are friendly and adversary, and their own use or resources. In order to provide feedback, collaborating 
agents have to be networked and often time-synchronized so that the sharing of information may take place. 
They can directly exchange information, or the information may be sent to a fusion center that processes, 
combines and analyzes information and shares it among all the agents in the system. There needs to be a low 
latency and secure way of providing feedback. Low latency is necessary in order to ensure that the feedback 
is up to date. Security and LPI communication are needed to ensure that the system and the information content 
are not exposed to adversary signal intelligence. Both protocol and waveform design are needed for the 
feedback system. 

Spectrum Cartography (SC) is a particularly attractive way of presenting awareness. In order to characterize 
the state of the spectrum in a broader geographical area, cooperative sensing using multiple spatially distributed 
sensors could be employed. Especially, in highly dynamic, densely used, hostile or contested radio 
environments distributed sensing the state of the spectrum is necessary. The goal of spectrum Cartography is 
to create a Radio Environment Map (REM) which describes the state of spectrum at any desired location, time 
instance and frequency band. This yields a total of five dimensions but depending on the use case of a map 
and clarity of the presentation, one typically visualizes only two or three of them. Actual measurements are 
obtained only in distinct sensor locations, but SC interpolates, estimates or predicts the state of the spectrum 
in between the sensing points. Most commonly a 2D or 3D map presents the RF power levels as a field at one 
frequency band over a geographical area assuming the spectrum state is quasi-stationary over time, 
i.e., stationary over the observation period. Alternatively, multiple frequencies can be presented as one 
additional dimension of the map. Another important design choice is the selection of resolution of the map.  
A continuous field may be made discrete and quantized in different dimensions. The impact of sampling time 
is especially critical and depends on the dynamic nature of the operational environment (velocity of the targets, 
channel coherence time, frequency selectivity of the channel). In cognitive radar systems, the spectrum maps 
may be utilized, for example, in optimizing the use of Degrees of Freedom for the radar task at hand, resource 
allocation, avoiding unintentional and intentional interference, and mission planning. For example, one could 
plan a path for a platform to a desired destination such that there is minimal exposure to adversary radars. The 
REM is the considered as a virtual potential field where the destination is an attractive forces and adversary 
radars are repulsive forces and the field varies obeying commonly used propagation models. 

For a multifunction radar, situational awareness can provide reasoning to switch and allocate or share resources 
among different tasks. The situational awareness is built based on continuously sensing the operational 
environment and learning from these returns. It is also acquired based on other types of sensors, as well as past 
data and experiences stored in a memory. The radar spectrum and hence the associated awareness depend on 
the time, frequency band, location and target scenario. Hence the radar environment needs to be sensed in a 
distributed manner, over different frequency bands and at sufficient rate to capture the dynamic behavior. In a 
combat situation, situational awareness is extremely important. Based on the situational awareness the radar is 
capable of maintaining a mission specific quality of service, for example a desired detection probability in a 
surveillance volume or accuracy in target tracking. This enables the radar to optimize the necessary parameters 
for each individual radar task. Such optimization pertains to the so-called effective resource management, 
which aims to optimize the resource allocation in a more general manner, based on the mission rather than the 
task at hand. This is a form of high-level cognition. 

4.9.3 Transmitter and Receiver Adaptation Using Situational Awareness 
Knowledge of the scattering coefficients and the radar channel may be utilized in optimizing waveforms, 
power allocation, as well as selection of subset of active transmitters and receivers, for example. Estimating 
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the scattering coefficients essentially means estimating the instantaneous channel matrix of the radar system 
after compensating for the transmit power and the propagation losses. Naturally, the estimation performance 
is limited by the signal power, interference plus noise power at the receiver and the number of observations 
the radar system has acquired. If the radar operates in a highly dynamic environment, the channel may vary 
very rapidly as a function of time, location and frequency and the estimates may become outdated in a short 
period of time. This topic is addressed in more detail in the context of waveform design and optimization.  

Similarly, Reinforcement Learning, may be used to model the operational environment and to take advantage 
of the situational awareness. The system models the states of the environment and participating agents. In such 
an approach one defines a reward function and the participating agents choose their actions in order to 
maximize it over time. The agents are able to observe the state of their environment, i.e., have access to 
situational awareness. The reward could be associated with high performance in a radar task, for example, 
target detection while operating in a hostile environment where jamming and other sources of intentional and 
unintentional interference is present. The state of the environment would then be associated with interference 
awareness. The reinforcement learning system would learn how to avoid interfering signals while maximizing 
its rewards since detection performance that is used as a reward depends heavily on the SINR values. 
Reinforcement learning is comprised of exploration and exploitation stages. Exploitation stage takes advantage 
of current knowledge or awareness in maximizing the rewards whereas exploration stage takes a look in 
unexplored resources (unknown territory) to find out if higher rewards would be available. Unexplored 
resources could mean, for example, employing other subbands in frequency, using different antenna array 
beampattern, or different radar code. Reinforcement methods need to find a balance between these two stages. 
For example, in the middle of exploitation, the method could randomly start an exploration stage with a small 
probability, for example p = 0.05. Reinforcement learning methods are often based on MultiArm Bandit 
(MAB) problem formulation and Partially Observable Markov Decision Processes (POMDP). 



 

STO-TR-SET-227 5 - 1 

Chapter 5 – PERFORMANCE ANALYSIS AND VERIFICATION 

In this chapter, the Cognitive Detection, Identification, and Ranging (CODIR) testbed is introduced. 
Its development and capabilities are presented, and some recent results from outdoor experimentation 
are reviewed. 

5.1 THE COGNITIVE RADAR TESTBED CODIR 
The Cognitive Detection, Identification and Ranging (CODIR) testbed consists of a waveform agile X-Band 
radar sensor and a controller with an implemented perception-action cycle. The sensor perceives the environment 
using the radar parameter settings defined by the controller. It includes the radar frontend, the sensor backend 
with waveform generator and A/D convertor and a real-time signal processor with an optional display. The 
controller segment tracks the target and selects the optimal radar settings at each new track update. It includes the 
Kalman filter tracker and the optimizer. A functional block diagram is provided in Figure 5-1. The black arrows 
show the data flow and represent the scheduling of the cognitive feedback loop. 

 

Figure 5-1: CODIR System Functional Block Diagram. The system consists of the sensor and 
controller segment (colored in blue). The sensor is comprised of signal generator, HF 
frontend, AD conversion and data processor while controller (colored in blue) is comprised 
of the optimizer and the tracker. The black arrows represent the data flow and the scheduling 
of the cognitive feedback loop.  

The development of the two segments has been done in parallel. The sensor has been designed and tested with 
fixed radar parameters and the adaptation capability has been tested with parameter sets that could be changed 
with an external trigger [143]. The development of the controller has been supported with a sensor simulator 
which has been adapted to the sensor characteristics [144] and with recorded sensor data with fixed radar 
parameters and a reproducible test setup [143], [145]. For the last development stage, the two segments have 
been integrated to synchronize the cognitive feedback loop with the continuously running transmit/receive 
loop of the sensor. 
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The CODIR system is similar in many respects to the Cognitive Radar Engineering Workspace (CREW) 
developed at the Ohio State University [146]. Both sensors have the key capability to adapt transmit and 
processing parameters such as Pulse Repetition Frequency (PRF) or number of pulses per Coherent Processing 
Interval (CPI) in real-time on the fly, based on the current radar returns. The two systems are complementary 
in the sense that the targeted scenario of CODIR aims at outdoor small target detection at X-Band, while 
CREW aims at indoor detection/tracking/classification at W-Band. 

5.1.1 CODIR Sensor 
The heart of the CODIR sensor is the waveform generator module which consists of an AD9914 Direct Digital 
Synthesis (DDS) evaluation board generating Linear Frequency Modulation (LFM) pulses, a small FPGA that 
triggers the DDS with a given Pulse Repetition Frequency (PRF) and a Raspberry Pi that controls and adapts 
both components. This module is controlled via an Ethernet network interface is able to adapt the chirp 
bandwidth B, chirp length Tp and the PRF of the transmitted waveform on the fly within microseconds. The 
signal is up-converted to X-Band, amplified and transmitted. 

On the receiver side, the target signal is first mixed with the outgoing transmit signal in order to deramp the 
signal and convert it to the Intermediate Frequency (IF) band. The Analogue-to-Digital (A/D) conversion is 
done with a Xlinx Kintex7 FPGA and the digitized signal is finally stored on a ring buffer storage on a RAM 
disk, where the raw data is passed to the processor for further processing. 

The signal processing chain starts with a Moving Target Indication (MTI) filtering step. Then, the target range 
and velocity is estimated with a FFT based Range-Doppler (RD) processing with a CPI length defined by the 
controller. Finally, a detector searches for the maximum amplitude in the RD map and the corresponding range 
and velocity measurement is passed on to the tracker. Optionally, a monopulse Direction of Arrival (DoA) 
estimation can be performed by comparing amplitude and phase of the data of two out of the four receive 
channels. A real-time display with RD map, current measurement and track update and with the current radar 
parameter settings are available. 

5.1.2 CODIR Controller 
The controller segment is responsible for tracking a single target and for selecting the optimal radar parameter 
at each track update. The development of the CODIR controller follows the framework described by 
Bell et al. [62], where a mathematical framework to implement a perception-action cycle for single target 
tracking is presented. 

A standard Kalman filter with a constant acceleration tracking model is used. If the sensor provides a DoA 
estimation, an Extended Kalman Filter (EKF) is used and tracking in done in Cartesian space. The track update 
loop starts at the optimizer with the estimation of the new update time 𝑡𝑡𝑛𝑛+1, the a priori state �̅�𝑥𝑛𝑛+1 and the 
new optimized radar parameter set 𝜃𝜃𝑛𝑛+1 which is sent to the sensor waveform generator to trigger the change 
in radar parameters (see Figure 5-1). With the a priori state �̅�𝑥𝑛𝑛+1 and the measurement update (𝑧𝑧𝑛𝑛+1 ,𝑅𝑅𝑛𝑛+1) 
from the processor the a posteriori state estimation 𝑥𝑥𝑛𝑛+1 is finally calculated by the tracker. 

The optimization scheme is based on the cognitive radar optimization framework developed in Bell et al., 
2015 [64] and on its adaptation to the CODIR testbed described by Oechslin [143]. The optimization is done 
at every track update and consists of the evaluation of the predicted track accuracy and the estimated 
measurement and quality cost for each possible radar parameter set 𝜃𝜃 in consideration. The minimization of 
the cost function leads to an optimized radar parameter set 𝜃𝜃𝑜𝑜𝑑𝑑𝑡𝑡 that is passed to the sensor. In the case of 
CODIR, a radar parameter set is a 4D vector (B, T, D, N), where T = 1/PRF is the pulse repetition interval, 
N is the number of samples per pulse and D is the number of coherent pulses to be integrated. For simplicity, 
discrete radar parameter values have been adopted. Typically, the list of allowed radar parameter sets 
contains 100 – 200 items. 
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5.1.3 Choice of Cost Function 
The choice of cost function and optimization objectives is crucial and determines the optimization outcome. 
In a single tracking scenario, several, often conflicting, objectives such as tracking accuracy, minimal time 
effort, minimal energy consumption or minimal spectral footprint are of interest.  

During the development of CODIR several cost function formulations have been tried. Phenomenological 
approaches which were tailored to the sensor capabilities and limitations are tried first. In order to both 
minimize sensor resources and to assure a given track accuracy, the cost function has been modelled as a sum 
of sensor resources and accuracy costs. For example, for the sensor cost 𝑆𝑆(𝜃𝜃) = 𝐵𝐵 (to minimize bandwidth 
usage) or 𝑆𝑆(𝜃𝜃) = 𝐷𝐷 ∗ 𝑇𝑇 (to minimize time effort) has been adopted. The accuracy cost has been modelled as 
a penalty term which zero for all radar parameter sets θ with a predicted track uncertainty within a given 
accuracy threshold [143], [145]. Recently, a generalized cost function is implemented that is modelled as a 
weighted sum of single objective costs [147]: 

 𝐶𝐶(𝜃𝜃) = ∑ 𝑤𝑤𝑒𝑒𝐶𝐶𝑒𝑒(𝜃𝜃) =𝑒𝑒 ∑ 𝑤𝑤𝑒𝑒
𝑋𝑋𝑖𝑖(𝜃𝜃)−𝑋𝑋𝑖𝑖,0
𝑋𝑋𝑖𝑖,1−𝑋𝑋𝑖𝑖,0𝑒𝑒 . (5-1) 

Such an approach to Multiple Objective Optimization (MOO) with a linear combination of single objectives 
has been first considered in Ref. [71] in the context of cognitive radar optimization. In Eq. (1), Xi =
(B, T, D, N,αR,αv) is the single objectives vector consisting of the adaptable radar parameter and track 
uncertainties in range and velocity direction, respectively. Xi,0 is the corresponding single objective goal vector 
and Xi,1 is the corresponding least favourable values. The normalization of the single objective cost to the unit 
interval [0, 1] enables a comparison between different single objective costs. The choice of the normalized 
weight vectors wi = (wB,wT, wD, wN, wR, wv) enables us to define top level objectives by tuning the relative 
importance of the single objectives. For example, wi = (1, 0, 0, 0, 0, 0, 0) corresponds to minimizing the 
bandwidth usage (spectral footprint minimization) while wi = (0, 0, 0, 0, 0, 0.5, 0.5) corresponds to 
minimizing the track uncertainty in both range and velocity. This flexibility in weighting the single costs can 
be used to optimize multiple objectives simultaneously. For example, with wi = (0.5, 0, 0, 0, 0, 0.25, 0.25), 
we minimize the spectral footprint while optimize the track accuracy with equal prioritization. 

5.2 SUMMARY OF RECENT RESULTS 

5.2.1 Generic Scenario with Clutter 
In Oechslin et al., 2016 [143], we considered a simple test scenario with a single target (motor car) in an 
outdoor range without moving clutter. Tests with two optimization goals, time effort minimization and 
bandwidth minimization, have been performed. The controller was able to tune the sensor to different 
conditions in the scene and to different goals. At good detection conditions, the controller saved sensor 
resources by minimizing the time effort (in case of time effort optimization, see Figure 5-2) or the chirp 
bandwidth (in case of bandwidth usage optimization) of the transmit waveform. At difficult detection 
conditions (large target ranges, small SNR, moving clutter, small target velocity) the controller allocated more 
radar resources to the sensor in term of time effort or bandwidth in order to fulfil the track accuracy goal. 
Therefore, the controller only allocated the resources the sensor needed to do its task and released unused 
resources. If the time effort for measurement was smaller than the minimal tracker update time, this spare 
time could be used for other measurement task such as a micro-Doppler or a high range-resolution profile 
measurement for classification purposes. On the other hand, if the optimized bandwidth is smaller than the 
maximal allowed bandwidth, the unused spectrum could be used by another participant in this spectral band. 
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Figure 5-2: CODIR Controller Optimization with Time Effort Minimization. The following 
quantities (top left to bottom right) are described: 

• Range and velocity evolution (red: measurements, blue: track, black: range limits). 

• Track uncertainty given by the a posteriori tack covariance matrix P. 

• SNR (red: measurement from RD map, blue: track). 

• Radar parameter selection (𝑩𝑩,𝑵𝑵, 𝑫𝑫 and PRF). 

• Time effort to do measurement (red), tracker update time (blue). 
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5.2.2 Moving Clutter Environment 
In the same work, we have also considered a scenario with moving clutter that contaminates part the RD plane. 
Here, a Maximum Posteriori – Penalty Function (MAP-PF, see Ref. [143] where a tracking scheme is applied 
to guide the track through the moving clutter region). The controller was able to adapt the sensor such that the 
target could be successfully tracked through the moving clutter region, even though a smaller PRF (i.e., more 
time effort) is needed. 

5.2.3 Spectrally Congested and Jammed Environment 
In Oechslin et al., 2018 [145], we considered a more challenging environment, with part of the spectrum is 
not available to the sensor and with a broad band jamming with different intensity. For this, the list of 
waveforms has been enlarged with a set of gapped LFM waveforms to avoid the spectral band not available 
to the sensor. The noise level with each waveform and jamming intensity were recorded prior to the 
measurement and fed back to the controller to favour waveforms with sufficient SINR for the required 
detection and tracking capability. With this input, the controller was able to adapt the sensor to different 
target conditions and to different jamming environments. While the standard LFM waveforms are preferred 
in the no-jamming environment, gapped waveforms were selected by the controller in jammed environments.  

5.2.4 Generalized Cost Function 
In Oechslin et al., 2019 [147], the generalized cost function formulation has been adopted to explore the 
dependency of the system performance on the chosen objective, cost function and target dynamics. The system 
performance in term of track accuracy has been analysed by comparing the radar tracks to DGPS ground truth 
data. The system was able to adapt its radar parameter in real-time to meet one or a combination of objectives. 
In the case of optimizing multiple conflicting objectives the relative prioritization could be adjusted and the 
system adapted its radar parameters accordingly. 

5.3 EXPERIMENTAL DEMO OF COGNITIVE SPECTRAL SENSING AND 
TRANSMIT NOTCHING 

Spectrum sensing and transmit notching is a form of cognitive radar that seeks to reduce the mutual 
interference between a radar and other spectrum users in the same band. This concept was experimentally 
examined for the case in which other spectrum user(s) move in frequency during the radar’s Coherent 
Processing Interval (CPI) [148]. The structure of the physical radar emission was based on a Recent Frequency 
Modulated (FM) noise waveform [149], [150], that is robust to the degradation of sidelobes that otherwise 
arise when transmit spectral notching is introduced [151].  

Due to the increasing likelihood of spectrum sharing with 4G and 5G communications, the Radio Frequency 
Interference (RFI) considered took the form of in-band Orthogonal Frequency Division Multiplexed (OFDM) 
signals that frequency hops around the band. The interference was measured each Pulse Repetition Interval 
(PRI) and a recently developed Fast Spectrum Sensing (FSS) algorithm [152] was applied to determine where 
notches are required, thus facilitating a rapid response to dynamic interference environments.  

To demonstrate practical feasibility and to understand the performance trade-space, free-space experimental 
measurements based on the resulting notched radar waveforms were collected and then synthetically combined 
with the separately measured hopping interference. A variety of conditions were examined, including the 
impact of hopping RFI during the radar CPI, the effect of latency in the spectrum sensing/waveform design 
process, notch tapering to reduce range sidelobes, notch width modulation arising from variations in spectrum 
sensing, and the impact of digital up-sampling on notch depth (details are provided in Ref. [148]). 
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5.3.1 Spectrally Notched FM Noise Waveforms 
This cognitive radar framework takes advantage of a recently developed FM noise radar waveform denoted 
as Pseudo-Random Optimized (PRO) FM [149], [150]. These waveforms are unique and change on a 
pulse-to-pulse basis, with each individual waveform possessing relatively low range sidelobes by realizing an 
approximate Gaussian shape for its power spectrum [153] (though the spectrum shape is arbitrary in general). 
In this context the utility of these waveforms arises from 1) being FM, so that they are readily amenable to the 
rigors of the radar High-Power Amplifier (HPA), and 2) when combined in Doppler processing after pulse 
compression, where their unique range sidelobe structures combine incoherently to achieve further sidelobe 
suppression. Due to a spectral shaping construction, this type of waveform has been shown to readily permit 
the inclusion of spectral notches [154], [155]. 

Consider the design of a pulsed FM waveform with duration T and 3-dB bandwidth B for which relatively low 
autocorrelation sidelobes is desired. The FM structure provides a constant amplitude envelope and relatively 
good spectral containment (compared to phase codes [156]). The mth pulsed waveform is initialized with a 
random instantiation of a Polyphase-Coded FM (PCFM) waveform [157], denoted as s0,m(t). To enable 
optimization, the length-N discretized version s0,m is used, which is “over-sampled” with respect to 3-dB 
bandwidth to provide adequate fidelity (i.e., minimal aliasing) by including a sufficient portion of the spectral 
roll-off region. 

This discretized waveform undergoes K iterations of the alternating projections 

𝒓𝒓𝑘𝑘+1,𝑚𝑚 = 𝔽𝔽−1�𝒈𝒈⊙ 𝑒𝑒𝑥𝑥𝑝𝑝�𝑗𝑗∠𝔽𝔽�𝒔𝒔𝑘𝑘,𝑚𝑚���. (5-2) 

𝒔𝒔𝑘𝑘+1,𝑚𝑚 = 𝒖𝒖⊙ 𝑒𝑒𝑥𝑥𝑝𝑝�𝑗𝑗∠𝒓𝒓𝑘𝑘+1,𝑚𝑚� (5-3) 

where F  and 1−F  are the Fourier and inverse Fourier transforms, respectively, ( )∠ •  extracts the phase of 
the argument, and ʘ is the Hadamard product. The length-N vector g is likewise a discretization of the desired 
spectrum |G( f )|, while the length-N vector u is a discretization of the rectangular window u(t) that has the 
same duration T as the pulse. Per Ref. [148], based on the observed in-band RFI, notches can be placed in the 
desired spectrum of each waveform via direct manipulation of |G( f )| and/or through application of nulling 
approaches such as Reiterative Uniform Weight Optimization (RUWO) [158]. In fact, the very recent 
development of the Analytical Spectral Notching (ASpeN) approach has been used to experimentally 
demonstrate notches achieving a depth of  −57 dB relative to the spectrum peak [159].  

5.3.2 Assessment of Spectrally Notched FM Noise Waveforms 
While notching a radar’s transmit spectrum to mitigate mutual interference between the radar and other in-band 
users is certainly theoretically possible, it is necessary to consider the practical feasibility and corresponding 
performance trade-space. For example, it was shown in Ref. [155] that enforcement of a sharp-edged spectral 
notch realizes a sin(x)/x roll-off in autocorrelation sidelobes, which tends to be undesirable (see the “Notch w/o 
Taper” case in Figure 5-3). However, the inclusion of an appropriate taper at the notch edges can greatly 
alleviate this spreading sidelobe effect. 

Another factor that significantly impacts notching performance arises when the RFI moves within the radar 
band during the CPI. Notwithstanding the degradation that can occur when the spectrum sensing and waveform 
notching procedure have too high a latency to “keep up” with such changes in the RFI spectral locations 
(see Ref. [148]), the moving notch locations themselves introduce a nonstationary effect that can degrade 
clutter cancellation on receive. For example, compared to the “thumbtack” delay-Doppler point spread 
function that is observed for random FM waveforms when no spectral notching is performed, Figure 5-4 
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illustrates the spreading that occurs for two different cases. Clearly the spreading gets worse as the rate of 
notch movement increases (assuming it can precisely keep up with the spectrally hopping RFI). 

 

Figure 5-3: Measured Aggregate Autocorrelation (for 2500 Unique FM Noise Waveforms) 
Comparing Spectral Notch Tapering to the Case Without Tapering and the Absence of a 
Notch [148]. 

  

Figure 5-4: Delay-Doppler Point Spread Function When a 10% Bandwidth Spectral Notch 
Randomly Moves 10 Times (Left) or 100 Times (Right) During a 100 ms CPI [148]. 

5.3.3 Free-Space Experimental Evaluation of Spectrally Notched FM Noise Waveforms 
An experiment was performed in which OFDM-based RFI was generated, measured, and then used to drive 
subsequent spectrum sensing and notched waveform generation. The resulting waveforms were then 
transmitted via open-air from a rooftop on the University of Kansas campus to illuminate a nearby traffic 
intersection in Lawrence, KS to evaluate Moving Target Indication (MTI) performance. In this manner the 
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measured RFI could be combined synthetically with the measured radar responses to assess the impact with 
and without spectral notching of waveforms separate from RFI suppression capability. 

Figure 5-5 shows the measured results after performing pulse compression, Doppler processing, and clutter 
cancellation, where the latter involves a simple projection (due to the stationary platform) and the full-band 
and (stationary) notched waveforms were interleaved to permit direct comparison of the results. While each 
waveform’s spectral notch does employ tapering, there is still some broadening in range that can be observed 
in the right panel relative to the full-band result in the left panel. Of course, the synthetic injection of RFI 
at -20  dB Signal-to-Interference Ratio (SIR), as illustrated in Figure 5-6, reveals that spectral notching does 
provide a significant benefit when performing matched filtering in the radar receiver (in addition to reducing 
the interference caused to other spectrum users). It should be noted that RFI in this case had rather poor spectral 
containment, which is the reason why residual interference is still observed despite notching. 

Figure 5-5: Free-Space Range-Doppler Response Without RFI for Full-Band Random 
FM-Waveforms (Left) and Stationary Notched Random FM Waveforms (Right) [148]. 

Figure 5-6: Free-Space Range-Doppler Response with Injected RFI (at -20 dB SIR) for Full-Band 
Random FM Waveforms (Left) and Stationary Notched Random FM Waveforms (Right) [148]. 

Finally, it is rather interesting to consider the impact that moving notches during the CPI, in response to 
spectrally hopping RFI, has on radar clutter cancellation. Figure 5-7 illustrates this case when no RFI is present 
and when synthetic RFI has been injected. The left (no RFI) clearly shows that standard clutter cancellation is 
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insufficient to address this nonstationary effect, resulting in residual clutter that is smeared across Doppler. It 
is been very recently determined that this result is a combination of: 

1) The Range Sidelobe Modulation (RSM) that arises whenever non-repeating waveforms are employed;
[160] and

2) A modulation of the pulse compression mainlobe due to the changing notches [161], with new
techniques being developed that in preliminary trials are showing good effectiveness at compensating
for this source of degradation.

Figure 5-7: Free-Space Range-Doppler Response for Hopping Spectral Notches Without RFI 
(Left) and with Injected RFI at -20 dB SIR (Right) [148]. 
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Chapter 6 – APPLICATIONS 

6.1 OVERVIEW 
Over the past 15 years, research into cognitive radar system design has covered a wide range of applications, 
using many different techniques that draw on prior advancements in Bayesian decision theory, information 
theory, decision theoretic approaches (including fuzzy logic, rule-based systems, metaheuristic algorithms, and 
Markov decision processes), dynamic programming, optimization (including maximization of Signal-to-Noise 
Ratio (SNR), convex optimization, and use of the Cramer Rao Lower Bound (CRLB), among others), and game 
theory. Thanks for the steady increase in conference and journal special sessions as well as conferences focusing 
on cognitive sensing, there has been a dramatic increase in publications over the last few years, as shown in 
Figure 6-1. These papers (83 journal papers and 238 conference papers) were identified based on a keyword 
search over “cognitive radar” and “fully adaptive radar” in the IEEExplore and SPIE Digital Libraries.  

Figure 6-1: Publications on Cognitive Radar (2003 – March 2019). 

A sense of the focus of these research efforts can be gained through examination of these works in terms of the 
techniques exploited and applications targeted. The results of this survey are provided in Figure 6-2 as a histogram 
of applications and techniques. This histogram reveals that while a wide range of applications are being 
investigated, research has focused on just several applications; namely, conceptual studies investigating 
Architectures and Mechanisms for Cognitive Processes in Engineering Systems (ARCH), Radar Resource 
Management (RMG), Target Detection (DET), Localization/Direction-Of-Arrival Estimation (LOC) and 
Tracking (TRK), Radar Networks (RN), and Spectrum Sharing (SS). Most works involve some form of 
Waveform Selection, Optimization and Design (WD), while Adaptive Control of Antenna Beam Pattern and 
Design of Adaptive RF Components (ADPTHARD) as well as Experimental Testing of Cognitive Systems 
(EXP) have also been explored. 

Spectrum sharing has been a topic of focus due to the urgent challenges presented by a congested RF spectrum 
to military and civilian systems alike. The availability of frequency spectrum for multi-function radar systems 
has been severely compromised and the available frequency bands are continuously diminished. The growth of 
activities in the area of civil communications, the emergence of new technologies and new services that involve 
a strong demand for spectrum allocation induce a very strong pressure upon the frequency channels currently 
allocated to radars. In the VHF (30 – 300 MHz) and UHF (300 – 1000 MHz) bands, where for instance Foliage 
Penetrating (FOPEN) radars are active, interference can come from broadcast and TV services. Recently, these 
bands have seen the introduction of the IEEE802.11ah and IEEE802.11af protocols for Internet of Things (IoT) 
and Cognitive Radio Technology, respectively. Recently, in the United States, the National Telecommunications 
and Information. 
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Figure 6-2: Techniques/Applications Investigated in Cognitive Radar Publications 
(2003 – March 2019). 

Administration (NTIA) has devoted efforts on identifying frequency bands that could be made available 
for wireless broadband service provisioning, resulting in allocation of 115 MHz of additional spectrum 
(1695 – 1710 MHz and 3550 – 3650 MHz bands) and a conflict with L-band (1 – 2 GHz) radars. An 
example is the air route surveillance radar used by the Federal Aviation Administration (FAA) that shares 
the spectral band with Wireless Inter-Operability Microwave Access (WiMAX) devices. The majority of 
the LTE services, e.g., WiMAX LTE, LTE Global System for Mobile (GPS) are operative in the S-band 
(2 – 4 GHz), where they interfere with surveillance radars. In C-band, the spectrum has been eroded by 
allocation of the 5 GHz band to 802.11a/ac wireless LAN technology. X-band is still free from 
communication services interference, but when 5G systems become fully operative, even the Ka, V and 
W bands will be “dense”. 

Thus, in a near future, radars will likely be required to share their bandwidth with communication systems, 
where the latter ones, quite often, are the primary users. Yet, this problem cannot be addressed only by 
traditional modes of operation, such as antenna beamforming or interference cancellation on receive. 
Future systems require the ability to anticipate the behavior of radiators in the operational environment 
and to adapt the transmission to it in a cognitive fashion based upon the spectrum availability. The radar 
cognition in this case is based on two main concepts: spectrum sensing and spectrum sharing. Spectrum 
sensing aims at recognizing frequencies used by other systems occupying the same spectrum in real time, 
while spectrum sharing tries to limit interference from the radar to other services and vice-versa. 

Furthermore, battlespaces of the future will not involve isolated geographical regions with limited 
technological resources, but will require integration of networked ground-based, airborne, and 
space-based sensors at different levels, seamlessly integrated and automated to find, identify and track 
threats in increasingly complex and diverse environments. The challenge of spectrum congestion is but 
one dimension of this broader battlespace. Technological advancements have not just benefited modern 
society but have also made it easier for adversaries to make their forces both mobile and elusive, such 
through use of small drones to attack a diverse set of tactical targets, previously not exposed to any threat. 
Both force protection and forward operations require pervasive, robust, and agile sensing that can 
optimize multiple missions in a dynamic environment. 
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This operational requirement directly maps to the definition of what a cognitive radar strives to accomplish, 
and indeed, the generalized notion of a cognitive sensor network, empowered with multiple-layers of 
hierarchical cognitive processing. As the capabilities of radar transceivers advance to jointly sense, learn, and 
adapt on both transmit and receive, new opportunities and vulnerabilities will become part of the changing 
dynamics of Electronic Warfare (EW). While boosting sensing capabilities so that friendly systems can defend 
against jamming and other counter-measures, and leaving adversaries no place left to hide, cognitive radar 
nonetheless retains the risk that it could be beguiled into poor decisions, much akin to the human counterpart 
that has inspired its design. Thus, the key will be how to construct such a radar so that it can learn from past 
mistakes that have occurred as a result of poor decisions, and thereby enable it to gain the ability of making 
informed decisions in the future. 

In the following sub-sections, discussion of the role of cognitive radar in specific application examples is 
given; namely, spectrum sharing, imaging radar, and jammer deception. 

6.2 COGNITIVE RADAR IN SPECTRUM SHARING SCENARIOS 

In this sub-section, we will provide an overview of some the cognitive radar technologies which can be utilized 
to provide efficient spectrum sharing and coexistence among radars and other radio systems. These 
technologies are in the core of cognitive radars since they require knowledge of the radar channels, interference 
and jamming awareness as well as adaptation of both transmitters and receivers to achieve desired quality of 
service for all subsystems while managing the mutual interference. Such situational awareness may be built 
via sensing, feedback and exchange of information among different radios and subsystems. Consequently, 
a full Sense-Learn-Adapt cognitive cycle will be employed since sensing of the spectrum, building and 
learning situational awareness from the observations as well as adapting both the transmitters and receivers is 
taking place. 

6.2.1 Spectrum Sensing 
Some of the spectrum sensing techniques proposed for the radar systems, are reminiscent of those already operative 
in cognitive radio systems. The open literature on spectrum sensing focuses on primary transmitter detection based 
on the local measurements made by the secondary users, since detecting the primary users that are receiving data 
is in general very difficult. According to the a priori information they require and the resulting complexity and 
accuracy, spectrum sensing techniques can be clustered into the following main categories [60]: Energy Detector 
(ED), Feature Detector (FD), and Matched Filter (MF) detector techniques. 

The ED is the most common spectrum sensing detector because of its low computational cost and 
implementation complexity. In addition, it does not need any a priori knowledge on the signal emitted by the 
primary users. Detection is performed by comparing the output of the energy detector with a threshold, which 
depends on the noise floor. Some of the drawbacks of the energy detector are the inability to differentiate 
interference from primary users and noise, inefficiency for detecting spread spectrum signals, and poor 
performance in low signal-to-noise ratio situations. 

Another type of spectrum sensing detector is the FD. There are specific features associated with the signal 
transmitted by a primary user. For instance, the statistics of many communication signals show some inherent 
periodicities such as the modulation rate or the carrier frequency. Such features are usually viewed as 
cyclostationary features, based on which a detector can distinguish cyclostationary signals from stationary 
noise. Compared with energy detectors that cannot detect weak signal in noise and are subject to high false 
alarm rate due to noise uncertainty, cyclostationary detectors are good alternatives because they can 
differentiate noise from primary user’s signal and have better detection robustness in a low-SNR regime. 
However, the computational complexity and the significant amount of observation time required for adequate 
detection performance prevent a wide use of this approach. 
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The last kind of detector is the MF detector. Matched filtering is known as the optimum method for detecting 
primary users when the transmitted signal is known. The main advantage of matched filtering is the short time 
to achieve a given probability of false alarm or a given probability of missed detection as compared to the 
other methods discussed in this section. However, matched filtering requires a perfect knowledge of some 
primary users signaling features, such as bandwidth, operating frequency, modulation type, pulse shaping, and 
frame format. Moreover, since cognitive radio needs receivers for all signal types, the implementation 
complexity of sensing unit is impractically large. If the MF design relies on wrong information, the detection 
performance will be largely degraded. Advantages and disadvantages of these three classes of spectrum 
sensing techniques are summarized in Table 6-1. 

On the other side, multiple spectrum sharing techniques ad policies have been proposed in literature for 
guaranteeing radar and communication system coexistence. Some of them are cooperative, and suppose some 
form of information exchange between radar and communication devices [162], some of them are 
non-cooperative, then radars do not communicate with the other RF sources and adapt their transmit 
waveforms in order to avoid interferences. One of this strategy is to add spectral notches to the radar waveform. 
These spectrally compliant waveforms have the capability to mitigate RFI to other RF emitters and maximize 
the available bandwidth [152]. 

Table 6-1: Summary of Main Spectrum Sensing Techniques. 

Type Test Statistics Advantages Disadvantages 

Energy 
Detector (ED) 

Energy of the received signal. • Easy to implement. 

• Does not require 
prior knowledge 
about primary 
signals. 

• High false alarm rate 
due to noise 
uncertainty. 

• Very unreliable in 
low-SNR situations. 

• Cannot differentiate a 
primary user from 
other signal sources. 

Feature 
Detector (FD) 

Cyclic spectrum density 
function of the received 
signal. 

• More robust against 
noise and better 
detection in 
low-SNR than 
energy detector. 

• Can distinguish 
among different 
types of 
transmissions and 
primary systems. 

• Specific features must 
be associated with 
primary signals. 

• Higher complexity 
than energy detector. 

Matched 
Filtering (MF) 

Projection of the received 
signal in the direction of the 
known primary signal. 

• More robust against 
noise and better 
detection in 
low-SNR than 
feature detector. 

• Require fewer signal 
samples to achieve 
good detection. 

• Require prior 
information about 
certain waveform 
patterns of primary 
signals. 

• High complexity, 
mostly unpractical. 
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6.2.2 Spectrum Sharing 
Spectrum sharing has been broadly categorized into three approaches: coexistence, cooperation and 
co-design [163]. In this report, we denote coexistence as a more general term which covers all different 
aspects of spectrum sharing (see Figure 6-3). In the simplest form, coexisting systems try to avoid mutual 
interference by sensing the spectrum and accessing it only if the spectrum is found to be idle or underutilized. 
No sharing of information or cooperation among subsystems, such as radar and communications systems, 
is necessarily required and the participating systems are typically distinct and in different locations. Hence, 
the term non-cooperative spectrum sharing in used in Figure 6-3. Different radio systems are competing for 
the spectrum resources, while following some kind of etiquette in spectrum access and regulations on the 
power usage. In some cases, certain radio system may be a primary system with higher priority and the other 
systems are secondary systems that may access the spectrum only if the primary system is not active or if 
they do not exceed certain interference level (underlay). As an alternative to these hierarchical systems, all 
the systems may be equal as in the case of ISM bands. Since no cooperation is taking place, this approach 
does not necessarily require changes in standardization if subsystems are wireless communications systems. 

Figure 6-3: General Categorization of Spectrum Sharing System. 

In cooperative scenarios different radio system may exchange information about the state of the radio 
spectrum, channel quality information as well as interference awareness. They may also take advantage of 
knowledge of the waveforms and pilot signaling used in different subsystem to estimate channels and levels 
of interference. The reciprocity of the radio channels may be also exploited if the systems use the same 
frequencies in both directions of a link within a coherence time. The acquired awareness on the state of the 
spectrum may be used, for example to optimize the waveforms in different subsystems for a specific task or 
scenario. As an example result, the desired detection performance in the radar subsystems could be achieved 
while ensuring that the communications users get their required Quality of Service (QoS). In a radar-centric 
optimization of the waveforms the radar performance is used as an objective function and the constraints 
ensure sufficient performance for the communications subsystems as well as impose constraints on the use 
of resources such as power or bandwidth. Alternatively, a communications centric optimization may take 
place in which the objective could be the sum rate of communication users or some QoS level. Furthermore, 
a pareto-optimal solution might be of interest where both radar and communication system performance are 
used in the objective function and increasing the performance of the radar subsystem would deteriorate the 
performance of communications subsystem and vice-versa. Cooperative systems may operate in distinct 
locations or they may be co-located. This kind of cooperation usually requires changes in standardization 
since the formats of information exchanged and protocols for cooperation need to be agreed upon. 
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Co-designed radar and communications systems would typically be co-located as well. Then sharing the 
knowledge on channel state and interferences is simple. Moreover, optimizing waveforms, scheduling, 
resource allocation and synchronization would be easier to achieve. Reduced control information exchange 
among different subsystems would be required. The waveforms could be designed so that they share the 
resources (antennas, beams, subbands) or the employed waveforms could be designed so that sensing and 
communications are embedded in the same waveform. One of the systems can be a primary system whereas 
the other system is guaranteed some minimum performance level. 

The concept of Dual-Function Radar-Communications (DFRC) is an example of an approach which performs 
the communications as a secondary task in addition to the primary radar operation while sharing the same 
spectral resources [164]. A secondary communications function may embed information symbols in radar 
waveforms such that the radar achieves its desired performance. The popular techniques embedding 
communications into radar signaling include waveform diversity-based methods, sidelobe amplitude 
modulation method, multi-waveform Amplitude Shift Keying (ASK) method, and Phase Shift Keying (PSK) 
method. The waveform diversity-based method uses a dictionary of waveforms such that each waveform 
corresponds to one communication symbol [165]. A multi-waveform ASK-based scheme exploiting sidelobe 
control and waveform diversity was proposed in Ref. [166] which can transmit different communication 
symbols to different users during one radar pulse instead of broadcasting to all users. 

The last category of coexistence are passive radars that take advantage of broadcast signals such as digital TV 
signals (DVB-T, DVB-T2), FM radios or Wi-Fi signals as signals of opportunity in performing radar tasks 
instead of actively transmitting radar waveforms. Similarly, adversary radars could be used as a signal 
of opportunity. 

There are a couple of topics that need to be addressed prior spectrum sharing can alleviate the spectrum 
congestion. First, the spectrum regulation needs to allow spectrum sharing. Efficient sharing requires learning 
and understanding how the time-frequency-location varying state of the spectrum evolves (situation 
awareness), how different subsystems operate, their performance criteria and how they impact each other in 
terms of interference and use of resources. Then methods, protocols and policies are needed to design the 
coexistence and cooperation of the subsystems, or co-designing radar and communication systems. Finally, 
advanced technologies, such as waveform optimization, precoder-decoder designs, subspace projections, 
beamforming, interference mitigation, resource allocation or task scheduling needs to be deployed. Addressing 
the topics separately simplifies the discussions, even though they all influence each other. 

One major obstacle that has slowed down agile use of spectrum is the current rigid regulation of frequency 
bands. The spectrum can be used more efficiently by allowing more users to use the spectrum in an agile 
manner. Other users may have equal rights to use the spectrum or the systems may be hierarchical wit licensed 
primary users and secondary unlicensed users when accessing underutilized frequency bands. Hence, overall 
higher data rates, improved QoS or better radar performance may be achieved. This requires better 
understanding how the different radio systems impact each other if they coexist and share the spectrum. 

The awareness of the spectrum state can be exploited to efficiently utilize the scarce resources. This awareness 
is constructed through sensing followed by estimating, learning the state of the spectrum and having memory 
that captures information from past experiences. Knowledge of active radio system parameters would be 
useful, if available. Some radio system, for example, cognitive radio systems, are able to sense and access the 
identified idle spectrum in a flexible and opportunistic manner. In the special case of radar systems, 
the spectrum state is more dynamic which makes the spectrum state estimation more challenging. 

Finally, all coexistence of different radio systems means also that new advances in technology are needed in 
order enhance the spectrum usage further. For example, joint system design, optimizing the transmitted 
waveforms and receiver processing, designing precoders and decoders and interference mitigation have been 
proposed to maintain or even improve the performance in coexisting system scenarios.  
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6.2.3 Spectrum State Awareness / Spectrum Maps 
Awareness of the state of radio spectrum is a key enabler for efficient and agile spectrum use and coexistence 
of different radio systems. Acquiring such awareness is a challenging task because the state of the spectrum 
varies depending on time, frequency and location, [ARF]1. Prior knowledge of spectrum allocations, 
different types of potential users and employed waveforms as well as surveillance information may be 
available. Sensing, which is a crucial component in any cognitive processing, is also necessary in acquiring 
the spectrum awareness. For example, in order to characterize the state of the spectrum in a broader 
geographical area, cooperative sensing using multiple spatially distributed sensors could be employed. 
Especially, in highly dynamic, densely used, hostile or contested radio environments sensing the state of the 
spectrum is necessary. 

A convenient way to represent spectrum awareness is Spectrum Cartography (SC). The goal is to create a 
Radio Environment Map (REM) which describes the state of spectrum at any desired location, time instance 
and frequency band. This yields a total of five dimensions but depending on the use case of a map and clarity 
of the presentation, one typically visualizes only two or three of them. Most commonly a 2D or 3D map 
presents the RF power levels as a field at one frequency band over a geological area assuming the power is 
quasi-stationary over time, i.e., stationary over the observation period. Alternatively, multiple frequencies can 
be presented as one dimension of the map. Another important design choice besides the dimensions is the 
selection of resolution of the map, i.e., grid size. The impact of sampling time is especially critical and depends 
on the dynamic nature of the operational environment (velocity of the targets, channel coherence time, 
frequency selectivity of the channel) and use case of the map. In cognitive radar systems, the spectrum maps 
may be utilized, for example, in resource allocation (optimization of transmitted waveforms, allocation of 
power, sensor selection, task scheduling), avoiding unintentional and intentional interference, and mission 
planning. 

There are two fundamentally different approaches to create a spectrum map. The parametric approach is based 
on knowledge (or estimation) of the system parameters, such as location, power etc., and usage of different 
parametric models such as propagation models for certain frequency bands and operational environments. An 
alternative approach, sometimes called non-parametric approach, utilizes measurements from a distributed 
sensor network to estimate the spectrum state in the other locations (or frequency) in between the measurement 
points without estimating the system parameters explicitly. This can be done with multiple different spatial 
interpolation and regression techniques. The proposed methods include Kriging interpolation [167], dictionary 
learning [168], basis expansion [169], matrix completion [170] and Reproducing Kernel Hilbert Space 
(RKHS) regression [171]. In practice, a hybrid method of these two seems most promising. Terrain 
information, including elevation, should be also be taken into account. 

Spectrum cartography has been widely exploited in cognitive radios with different techniques, for example 
packet forwarding, scheduling and interference management. However, there are some significant differences 
how radars use the spectrum in comparison to communication systems. Radars typically form very narrow 
beams in order to illuminate targets and significantly higher transmit powers are used as well. Radars may also 
scan the operational environment using a mechanical rotating antenna which introduces a periodic variation in 
the state of the spectrum. Alternatively, an electrically steerable antenna system such as Active Electronically 
Scanned Array (AESA) may be used and the beampatterns exhibit more irregular variations and rapid changes 
then. Some of the radars may be on a moving platform. Moreover, jamming and clutter can be 
time-frequency-location varying. Consequently, a spectrum map describing how the state of the spectrum 
evolves in radar scenarios will be highly dynamic.  

To capture the dynamic part of the spectrum state properly the construction of a spectrum map can de-coupled 
into static and dynamic parts, [172]. The static part of the maps can be estimated similarly as in the case of 

1 Advanced RF Mapping (Radio Map): http://www.darpa.mil/program/advance-rf-mapping. 

http://www.darpa.mil/program/advance-rf-mapping
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cognitive radios, for example, with Kriging interpolation method. The dynamic part of a map needs to be 
separately constructed, for example, by using a parametric approach. The measurements must be preprocessed 
such that possible strong temporal variations will not impact the modeling of the stationary part. This can be 
achieved, for example, by using median values instead of mean values in describing the expected value of the 
field over time. The temporal peaks can then be used to estimate radar operational parameters. Figure 6-4(a) 
illustrates an example of how two scanning radars impact the mean of the measured field and hence the whole 
spectrum map. In Figure 6-4(b), the strong temporal peaks are removed from the measurements. Finally, 
in Figure 6-4(c), a temporal snapshot of the spectrum map with two scanning radars is depicted. This is only 
a snapshot and if the radar is scanning in it may make more sense to draw the complete scanning sector to the 
map, as seen in Figure 6-5. In this figure, the static and dynamic parts are first separately modeled, 
but the final RF power values are calculated as max over the interpolated values and the modeled radar over 
the entire scanning period.  

Figure 6-4: Impart of Dynamic and Static Spectrum Map Components [172]. Red and white 
circles are surveillance and ordinary sensors. (a) Average measurement results with Universal 
Kriging method. (b) Impact of strong temporal peaks are removed. (c) The scanning radars 
are modeled based on surveillance sensor parameters estimation. 

Figure 6-5: Example of Using Spectrum Maps as a Repulsive Force in Path Planning. 
A combination of spectrum maps, and an attractive force, forms a potential field where 
the platform navigates to the target. Different scaling of the attractive force can yield 
different results. 
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Besides optimizing resource allocation spectrum maps can also be utilized in other task, for example in 
surveillance avoiding path planning for platforms such as aircrafts, as well as scheduling and selecting 
transmitters and receivers. In Melvasalo and Koivunen, 2018 [173], such maps are used to create virtual 
potential fields where adversary surveillance signals are modeled as repulsive forces and the desired 
destination as an attractive force. The attractive force is proportional to the square distance from the target. 
Combination of the two forces form further a virtual potential force field where the platform can navigate to 
find a safe route to the target. Since in practice, surveillance by radars cannot be totally avoided, the goal can 
be minimizing the treat or finding the shortest path while keeping the threat in a tolerable level. Other 
constrains such as maximum length of the path (flight time) can also be taken into account. 

6.2.4 Waveform Design and Optimization 
Waveform design and optimization play a central role in facilitating the coexistence and spectrum sharing. 
These problems have been addressed in a variety of scenarios, see Refs. [163], [174], [175], [176], [177]. 
The most common case is one communication and one radar systems sharing the frequency resources. 
The simplest design problem is faced when the two systems are co-located and they can be co-designed to 
achieve desired performance for both subsystems. The joint radar-communications system can be 
considered cognitive, if the waveforms and the use of resources are optimized by taking into account the 
channel state information and awareness of the radio spectrum, including interference awareness. A broader 
view is obtained by optimizing the use of Degrees of Freedom (DoF) in transmitters and receivers instead 
of just waveforms. The degrees of freedom include frequency, polarization, time, space (antenna or sensor 
location and selection) and waveforms (code and power allocation). Furthermore, the optimization can take 
advantage of some known dictionary of waveforms designed in advance, or it can find a numerical solution 
to an optimization problem. Both the transmitters and receivers need to be adaptive in cognitive processing. 
In case of radar subsystems, also the target scenario and the radar task and mission need to be taken into 
account in the optimization. For a coexisting communications subsystem, the goal is usually to ensure the 
desired Quality of Service (QoS) for the wireless users. It can be defined quantitatively in terms of data rate, 
error or outage probabilities or delays, for example. In more general cooperative design where the 
subsystems are not necessarily co-located, the two systems may exchange information, for example channel 
state information or level of observed interference (e.g., SINR value), but the design is done independently 
for both systems. In this case, the design can be called either radar-centric or communication centric, 
depending on which waveform is optimized based on the shared information. The performance requirement 
of the other subsystem is then imposed as a constraint to the optimization problem. An example of 
radar-centric optimization problem formulation, see Ref. [178], is: 

(6-1) 

in which radar’s probability of detection pD is maximized under constraints of false alarm rate (pFA) as in 
Neyman-Pearson detector with threshold value η, minimum rate constraint tk for kth wireless user and total 
power constraint PT. One could impose additional constraints on the shape of the ambiguity function (small 
departure from the ideal thumbtack ambiguity function) and constant modulus of the transmitted radar signal. 

The desired performance of both subsystem can also be described in a joint objective function and 
a pareto-optimal solution is found. Improving the performance of one subsystem may then decrease the 
performance of other subsystems. 

The formulation of the optimization problems and employed methods for solving them depend on how much 
information or prior knowledge is available and what kind of constraints are imposed. Furthermore, 
the objective function of the waveform design is different for different radar tasks and communications. 
A common objective, however, is to control the interferences caused to other systems. In practice, this can 
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mean e.g., maximizing the Signal to Interference and Noise Ratio (SINR) since it will impact probability 
of detection, target estimation variance as well as achievable data rate. Another objective is to take advantage 
of the non-contiguous spectral allocation and non-continuous use of spectrum and maximize the 
spectral efficiency. 

In scenarios where radars have to coexist and share spectral resources with other radio systems, managing 
interferences is a key task. Typically, this requires sensing the state of the shared spectrum and adjusting 
transmitter and receiver parameters so that the impact of interference is sufficiently reduced. Transmitters and 
receivers can use all of their DoFs such as different antennas, frequency, coding or polarization to mitigate or 
avoid interference. Radio receivers are always victims of the interference and consequently they need to use 
their DoFs to attenuate interferences. A common approach is to use multiple antennas and spatial processing 
for nulling the interference from certain direction. Interferences may also be caused by leakage of signals from 
adjacent channels, harmonics or due to reuse of same frequencies in different location. Multipath and clutter 
would be additional potential sources of interferences. The transmitters can adjust their transmit parameters so 
that the level of interference is reduced at the unintended receivers. In order to do so, awareness about the 
dynamic state of the radio spectrum and interference experienced at receivers in different locations, different 
subbands at different time instances is needed. The awareness may be obtained through feedback provided by 
the receivers to the transmitter about the channel response and Signal to Interference and Noise Ratio (SINR) 
it is experiencing. Both the transmitters and receivers can then be optimized so that the SINR is maximized 
at the receivers. Channel reciprocity is also useful property in building awareness of interferences. 

Multicarrier radar [179], is considered to be particularly well suited for coexistence scenarios, due to flexibility 
to adaptive spectrum usage. Moreover, it is a promising technology for RF convergence where the same 
transceiver platform is used both for radar or other radio frequency sensing and wireless communications. 
Coding of the waveform or pulse compression can be done over time or over subcarriers. In order to have an 
orthogonal design, subcarrier spacing may have to be adjusted. An example of a multicarrier design called 
MCPC waveform is given by Levanon and Mozeson [180], where pulse compression of multicarrier signal 
using a code of length M chips is employed. 

Waveforms can be optimized for different radar tasks, such are detection or target characterization or parameter 
estimation. For example, in Bica, 2018 [176] different radar waveform optimization criteria, such as 
maximizing the Mutual Information (MI) or probability of detection or minimizing Cramer Rao Lower Bound 
(CRLB) criteria, have been considered. Further constraint on the total transmitted radar power and 
an interference mask provided by the communications system. Constraints on Peak-to-Average Power Ratio 
(PAPR) and shape of the ambiguity function may be imposed as well.  

6.2.5 Interference Mitigation 
Interference mitigation may be performed at the receiver end alone. Then there is not necessarily need to acquire 
channel state information or exchange information among coexisting radios. Typically, it requires multiantenna 
receiver structures and processing of the received signals in spatial and/or time domain, see Ref. [177]. If the 
interferences are impinging the receiver from different angles than the desired signal, beamforming is commonly 
used in the receiver. The beampattern is designed such that there is a high gain towards the desired signals and 
a null is steered towards the interfering signals. Subspace processing may be employed as well. Based on the 
array covariance matrix and its eigenvectors, the received signal space can in some cases be divided to orthogonal 
signal and interference plus noise subspaces. The received signal can be then projected to a subspace orthogonal 
to the interference and noise subspace to enhance its quality. Consequently, the receivers will process practically 
interference-free signals. Similarly, precoders and decoders for radar and communication systems can be 
designed such that all interference in the system is aligned to a low-dimensional subspace. Interference Alignment 
based method for precoder-decoder design was introduced for MIMO radar and communications configurations 
in Cui et al., 2018 [181]. 
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Advanced interference cancellation receivers are techniques that decode desired information and then use this 
along with channel state information to cancel the interference part from the overall received signal. Such 
methods estimate the channel impulse response, use feedback about channel response or other awareness of the 
state of the radio spectrum. The channels are often assumed to be quasi-stationary, i.e., the coherence time of the 
channels should be sufficiently long so that the channel knowledge is not outdated during the interference 
cancellation. This class of techniques is typically applicable only for systems using digital modulation. 

Adaptive beamforming method for a coherent MIMO radar has been developed to reduce interference caused by 
communications systems in radar-communications spectrum sharing scenarios. The conditions of the MIMO 
radar mainlobe interference cancellation were established [177]. 

Dual-Function Radar-Communications (DFRC) system using MIMO transmitter in multi-user setting cab 
produce a desired radar waveform in one spatial direction and an information-bearing communication signal in 
another direction, hence controlling the interference by using spatial degrees of freedom. The method performs 
antenna selection and permutation of different antenna-waveform pairs [182]. 

If a waveform optimization method uses maximal SINR as an objective function, the resulting transmitter and 
receiver will be able cancel interferences. Typically, channel or interference awareness in needed in the process. 
The interference may be projected into a subspace where it is causing less performance degradation [183]. 
If interference alignment is able to steer all interferences to a very low-dimensional subspace so that the receivers 
can operate practically in an interference-free scenario while maintaining the desired degrees of freedom for 
resolving targets, forming beams, diversity order while ensuring sufficient spatial diversity for spatial 
multiplexing [181]. 

6.3 IMAGING RADAR COGNITIVE ARCHITECTURE: IMPLEMENTATION 

This sub-section illustrates how the imaging radar cognitive architecture (Figure 3-14) can be implemented to 
enhance radar detection and imaging capabilities [51]. The proposed architecture (Figure 3-14) appears as 
a whole in the example scheme depicted in Figure 6-6 [51]. The architecture has been rearranged to highlight 
the perception-action cycle (fully adaptive block) which is another main ingredient of CRs according to 
Haykin’s definition. 

Figure 6-6: Example of the Cognitive System Block Scheme [51]. 
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The perception-action cycle modifies the system parameters as a function of the actuating function outputs 
(β = g(α)) which represent the decision-making algorithm. This function is driven by some controlling functions 
(α) that represent a compressed measure of the information contained in the received returns and may change 
with respect to the mission. One problem to be solved is how the system is able to update the actuating function 
and, as a consequence, how to change its parameters in order to maximize the system performance in certain 
environment. The updating rule block together with the other ones in the cognitive block accounts for this 
purpose. Specifically, the updating rule block provides the weights (γ) that define α in the actuating function. 
The γ parameters are modified in accordance with the feedback given by the global success calculation block 
which compares the measured performance indexes (output of the performance calculation block) with those 
stored in memory. If the measured performance is better than those stored in memory, this is updated with both 
the actual weights and the actual performance values, otherwise the weights are modified throughout some rules 
aiming at performance improvement driven by mission prioritizing and resource availability. 

To better explain the behavior of the proposed architecture, in the following a dual band (L-band and X-band) 
multichannel FMCW-SAR system with GMTI (ground moving target indication) and imaging capability will 
be considered. The GMTI function is here implemented by using the Space-Time Adaptive Processing (STAP) 
[52]. The system is conceived to obtain high resolution images of non-cooperative moving targets detected 
in the scene. For this purpose, the performance has to be measured in terms of imaging and detection capability 
after clutter suppression. To accomplish this objective, the architecture behavior has been characterized 
through the following elements: 

1) Input Parameters, namely the signal backscattered from the environment (e.g., target, clutter,
interference). These elements are not dependent on the model but affect it.

2) Output Parameters (β), namely the system reconfigurable parameters (e.g., transmitted frequency,
f0, instantaneous bandwidth, B, transmitted power, PT), which embodies the effect of the system
behavior on the input.

[ , , , ]L L X XP B P B=β  (6-2) 

where PL and PX are the power allocated for the L-band and the X-band respectively, while BL and BX 
are the bandwidth allocated for the L-band and the X-band signal respectively. The power allocation 
must be manged by taking into account the limited amount of transmitted power (PT). 

3) The performance indexes which give an intrinsic representation of the system and are strictly
connected to the system performance. Specifically, taking into account that the system performance
relies on its capability to remove the clutter, detect the target and give well focused target images
(high resolution images), the following performance indexes are defined:

• The Attenuating Factor (AF) characterized by the ratio between multichannel SAR image power
before and after clutter cancellation:

Image

Image

P @ before STAPAF P @ after STAP
 =   

 (6-3) 

The greater the AF, the better works the STAP filter. It is important to underline that this 
parameter is insufficient to establish if the STAP works well or goes wrong. In fact, it could 
happen that the AF is high as a strong slow-moving target was removed. Therefore, the STAP 
filter Null Position (DN) and the Null Doppler Bandwidth (DNB) have been introduced. These 
are computed from the STAP filter Doppler profile and respectively correspond to the zero 
Doppler point (Ratio between the notch position of the actual Doppler filter and the ideal one) 
and the ratio between the notch bandwidth of the actual Doppler filter and the ideal one: 
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( ) ( )measured Doppler profile ideal Doppler profile  DNB B B = ⁄   (6-4) 

These parameters (AF, DN, DNB) give a measure of the STAP filter to reject the clutter and/or 
interferences. Then, are strictly linked to the system detection capability. 

• The range resolution gives a measure of imaging performance. 

4) Mathematical laws (2) which give the rules used to update the system reconfigurable parameters 
trough the controlling functions (α). 

( )] [ ][ igβ α=  (6-5) 

where g(i) namely the actuating function depends on the kind of mission (i = [1,2,3] = [imaging, 
detection, both]) and scenario and it is a weighted combination of α. Four controlling function, 
α = [ α1, α2, α3, α4], has been identified in the considered example. The first controlling function α1 
(6.6), directly manages the amount of power (PT) to be assigned to each frequency channel (X, L-band) 
according to the kind of clutter in the observed scene and the mission priority (6.7). To this end, a 
classification of the clutter in Nc classes, each one with assigned priority, w = [w1, …, wNc] and the 
percentage of pixels (p) for each class are needed.  
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It is important to point out that for each class of clutter it is possible to identify an operating frequency that 
gives the best performance in terms of target detection or target imaging. For instance, the L-band has to be 
preferred in case of targets embedded in forest clutter while the X-band has to be better in case of targets 
embedded in bare soil, sea clutter. The others controlling functions steer (increase/decrease of ΔB) the amount 
of bandwidth for each frequency channel, according to: 

( ) ( 1) sgn( )·i iB BB −= + ∆α  (6-8) 

where α is a weighted combination of the following controlling functions. 

2 3 3 4 42 + +=α γ α γ α γ α  (6-9) 

More specifically, α2 = {0,+1}, is a binary variable that suggests the actuating function to increase the 
instantaneous bandwidth (α2 = +1) when the range resolution is too poor with respect to the minimum range 
resolution required by the application at hand. The function α3 is a binary function (α3 = {0,-1}) that suggests 
to the actuating function to decrease (α3 = -1) the instantaneous bandwidth to avoid co-channel frequency 
interference and therefore improve the SINR value. Although α3 is a measure of the capability of the STAP 
filter to remove both clutter and interference, it is not sufficiently by itself to really assess the STAP filter 
performance. In fact, it may happen that the filter removes the moving targets as well. The controlling function 
α4 is a binary function (α4 = {0,-1}) that accounts for this issue and measures the effectiveness of the STAP 
filter with respect to the ideal one (Figure 6-7). More specifically, it depends on both the position and the 
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bandwidth of the filter notch in the radial velocity domain. It suggests to decrease the bandwidth (α4 = -1) to 
be sure that STAP does not remove moving targets, in fact α4 = -1 stands for the STAP filter does not perform 
well and then something went wrong probably due to some interferences. 

The weights γ are positive real numbers lower of equal to one. Their values must be modified to account for 
environmental changes by exploiting the measured performance indexes and stored performance indexes, 
AFmem and memrδ  (Table 6-2). The comparison among these indexes stands for effectiveness of the system 
functioning. 

Figure 6-7: Example of Ideal STAP Doppler Profile [51] [52]. 

Table 6-2: Updating Rules for Controlling Functions Coefficients [51] [52]. 

AF > AFmem AF < AFmem 

δr < δr,mem γ2 [t] = γ2 [t − 1] 

γ3 [t] = γ3 [t − 1] 

γ2 [t] = γ2 [t − 1] − Δp 

γ3 [t] = γ3 [t + 1] +Δp 

δr > δr,mem γ2 [t] = γ2 [t − 1] + Δp 

γ3 [t] = γ3 [t − 1] − Δp 

γ2 [t] = γ2 [t − 1] + ε 

γ2 [t] = γ3 [t − 1] − ε 

Referring to Table 6-2, when both the measured ΔF and δr are better than those stored in memory, the weights 
at time t remain the same of those at time t – 1 and the performances stored in memory are updated with 
the actual values. In the case in which the measured ΔF is worse than the one stored in memory 
(STAP performance degrades) the weight γ3 is increased of a quantity Δp, which is a positive real constant 
quantity. As a result, γ2 is decreased by the same quantity, while γ4 = 1 – ( γ2 + γ3). Similarly, when the measured 
δr is worse than the one stored in memory (resolution degrades), the weight γ2 is increased of a quantity 
Δp while γ3 is decreased of the same quantity. 



APPLICATIONS 

STO-TR-SET-227 6 - 15 

Finally, when both the measured δr and AF are worse than those stored in memory, the weights γ2 and γ3 are 
perturbed by a quantity ε<1. This approach permits to change the actuating function so as to prioritize the 
target imaging or the target detection. 

The proposed cognitive architecture has been tested on a SAR dataset simulated by the Institute of Electronic 
systems of the Warsaw University of Technology [53], [54], [55]. Table 6-3 outlines the simulation parameters. 

Table 6-3: Simulation Parameters [51]. 

Centre Frequency 9.6 GHz 

PRF 1.67 kHz 

TX Bandwidth 500 MHz 

Sampling Frequency 500 MHz 

Integration Time 0.4 s 

The terrain has been modeled by using a DEM with size 500 m × 500 m. Two moving targets were present 
in the scene: a large trailer truck with velocity 15 m/s along the range direction; a GAZ 66 military truck 
with velocity 30 m/s along the range direction. In order to assess the system capability to reconfigure itself 
in a context-aware manner, a monochromatic interference has been simulated and added to the received 
signal. For sake of simplicity only the bandwidth is considered as a free parameter to be optimized.  
To cope with the proposed objective, more than one acquisition of the same scene is executed by varying 
the interference frequency position and power and assuming that both the target and the clutter distribution 
do not change over time (Table 6-4). 

Table 6-4: Historical Sequence of the Interference [184]. 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Interference 
frequency 

(GHz) 

9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.55 9.55 9.55 9.55 9.55 9.55 9.55 

Interference 
power 

Low Med High High High Med Low Low Med High High High Med Low 

At the beginning, TX parameters are selected heuristically in order to provide the expected performance in 
absence of interference (Table 6-5) and the received signal is elaborated in order to extract the performance 
indexes and the controlling function. 

Table 6-5: Parameters Setting at the Beginning [51]. 

minr∆  
B 

2γ  3γ  4γ  

Figure 6-8 shows the STAP ability to filter out the clutter from the SAR image and the alpha values denote the 
preservation of the receiver requirements. Then the waveform parameters are unchanged in the second 
acquisition. The cycle is then repeated in light of the decision made in the previous acquisition time and new 
controlling functions are computed through the performance indexes extracted from the received signal.  
If the spectrum availability changes, a degradation of imaging capability could be evaluated by the global success 
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calculation block as a consequence of performance degradation (Figure 6-9). For instance, in the third cycle the 
AF exceeds the minimum one required (20 dB) suggesting the actuating function (α3) to reduce the instantaneous 
bandwidth to compensate the SINR reduction due to the presence of a strong interference. This is confirmed by 
α4 that attests an anomaly of the STAP filter profile. This fact means that the new spectrum environment affects 
the instantaneous bandwidth used by the system. To face this issue, the system senses the spectrum to detect the 
interference so as the updating rule block increases of a certain quantity the weight (γ2) related to the resolution 
and suggests the actuating function to increase the instantaneous bandwidth so as to exploit the largest portion of 
the available spectrum (Equation (6-5)). 

 

Figure 6-8: First Cycle (n = 1): Processing, Performance Indexes and Actuating Function [51]. 

 

Figure 6-9: First Cycle (n = 3): Processing, Performance Indexes and Actuating Function [51]. 

The cycle is then repeated over time in order to update the memory and to adapt in a dynamic way the system 
parameters to the environmental changes and spectrum allocation. The system evolution as a function of the 
interference frequency is reported in the following Table 6-6. 

The approach and architecture here presented are an example of how the cognitive radar paradigm allows 
mitigating the effect of a dynamic environment by ensuring a tradeoff between spectrum occupancy and 
system performance. More details can be found in Ref. [51]. 

6.4 Cognitive Jammer-Based ISAR Passive Radar 

The idea behind the utilization of a passive radar in Electronic Warfare (EW) operation lies in its capability to 
remain covert within the wider EW scenario. Today, EW becomes more and more agile, intelligent and flexible. 
Passive radar can, without disclosing its position, detect, localize, track and make ISAR images of targets. The 
parameters such as bandwidth, high transmitters power allow passive radar to perform air surveillance using the 
civil, commercial illuminators of opportunity such as FM, DVB-T or cellphone Base Transceiver Stations. 
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Table 6-6: System Evolution as a Function on the Interference [51]. 

 

With the advent of the rapid development of computers the idea of quasi-real time target ISAR imagery became 
possible. It is assumed that the radar range resolution cell should be no more than 1/10 of the target size.  
The bandwidth B = 7.61 MHz (DVB-T) allows to obtain the monostatic range resolution of the order of 20 m  
(in the bistatic scenario the value will be influenced by the cos of the bistatic angle). Utilizing many adjacent 
DVB-T channels to improve the range resolution is possible but entails problems with the frequency spectrum 
holes. An alternative possibility is utilizing jamming waveforms as illuminators for the operation of passive 
radars. For the case of a friendly jammer, the jamming waveform can be optimized for the two objectives of 
jamming and imaging performance. 

6.4.1 Case Study 
As is often in the case with radar, there is a tradeoff between jamming efficiency and ISAR imaging.  
Both approaches have conflicting requirements: the jamming is the most effective when the jamming signal 
follows the signal signatures of the radar that is jamming. The faster the jammer can react – the better. It allows 
to efficiently interfere with the original signal even if the frequency-hopping technique is utilized. What’s 
more, that kind of jammer in some scenarios (e.g., deceptive one) can record the signals and manipulate it on 
a pulse to pulse basis in order to deceive the radar. Rapid frequency hops during high PRF and changing 
modulation of the signal are problems to be solved in modern ECCM systems. On the other hand, the ISAR 
imagery expects long integration times (of the order of milliseconds), quite equalized bandwidth without 
notches. These contradictory features do not mean, however, that the simultaneous jamming and ISAR 
imagery are impossible to connect.  

The simplest form of jamming is barrage, i.e., interfering multiple frequencies simultaneously in a given 
frequency span. This approach is inefficient in terms of jamming effectiveness (the radar only sees the part  
of its bandwidth and the jammer needs to cover much wider span of frequencies that manifests as the lower 
spectral density of the noise). From the operational point of view this type of jamming can jam both hostile 
and friendly devices. What is more, modern pulsed-Doppler radars utilize complex pulse compression 
techniques and coherent integration what makes wideband jammers rather ineffective even if it seems that the 
jammer’s transmitter power is quite high. From the point of view of the ISAR imaginary that kind of signal 
has very good features (long integration time, wide bandwidth) provided that the SNR in the receiver is at  
a sufficient level. The most popular barrage jammers are noise ones. 
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The second type is spot jamming. Spot jamming can be similar to barrage jamming wherein it utilizes narrowed 
spectrum in the vicinity of the jammed signal frequency. It can be noise jamming, LFM jamming or 
signal-matched jamming what is the most effective one. This type of jamming can provide enough power and 
bandwidth to simultaneously jam and make ISAR image of the target that holds the jammed receiver.  

Summarizing, from the point of view of the ISAR imagery the Illuminator of Opportunity should feed the PCL 
receiver with high power, wide bandwidth and continuous signal with long integration time. The requirements 
for jamming are quite different – the jammer should have the matched bandwidth (or extend it in jammed 
signal neighborhood due to power accumulation in selected frequency span), provide rapid changes in order 
to follow the jammed signal in case of modulation, frequency (what is not the case in the wideband noise 
jamming scenario).  

In order to achieve the operational assumptions, the jammer should choose the emitting signal parameters in 
order to jam and image the target. One can imagine that the first thing that should be done is the classification 
of the target. Thanks to this appropriate action can be taken and further interference carried out. At the 
beginning when the target is detected and tracked by the Passive Emitter Tracking – Passive Coherent Location 
PET-PCL system (with PCL utilizing FM and DVB-T) and the signals from the target’s radars are analyzed 
by PET. The signal parameters are passed to the jammer and the noise signal is formed in the frequency vicinity 
of the signal from the target.  

6.4.1.1 Sample Case 
Let us analyze the very general and demonstrative use case with cognitive jammer-based passive radar called 
C-JAMPAR (See Figure 6-10) that is composed of Passive Coherent Location (PCL) and Passive Emitter 
Tracking (PET) systems that work together. This system utilizes jammers as illuminators of opportunity and 
uses their signals in order to detect, create ISAR image and probably classify the targets. It is assumed that  
the signals emitted by jammers are controlled by the friendly military forces that allow adaptive signal 
formation. The aim of the mission is to simultaneously jam the hostile target and to make ISAR image of the 
target in order to extract its special features.  

 

Figure 6-10: C-JAMPAR Use Case. 



APPLICATIONS 

STO-TR-SET-227 6 - 19 

The first step of operation is target detection by means of PET subsystem. It allows to estimate signals emitted 
by onboard radars. Next, tracking by means of PET and PCL (utilizing civil illuminators of opportunity such 
as DVB-T, FM) fusion is conducted. After the initial radio-electronic recognition in Step 2 signal 
characteristics that are going to be generated in friendly jammer are synthesized and transmitted to jammer. 
Next, the target is being illuminated by the suitable signal, which is supposed to both jam the target as well as 
make it possible to extract useful features from the reflected signal. It allows C-JAMPAR to track the target, 
make an ISAR image and estimate the necessary parameters. 

6.4.1.2 Jammer Transmitter Adaptation 

The adaptation of the illuminator should follow the following steps: 

1) PET (ELINT) signal capture, PET-PCL fusion target tracking; 

2) Estimate the power (if possible), PRF, pulse length, modulation, bandwidth, initial target classification 
based on PET signals and target flight trajectory; 

3) Transfer the signal description from, PET-PCL radar to jammer; 

4) Perform the scenario (e.g., image target as good as possible providing sufficient parameters  
for jamming); and 

5) Go to #1. 

Two scenarios of jamming are possible – the barrage jamming that allows to hide the target’s radar pulses in 
the noise or sending matched pulses which can jam the target in more intelligent way and allow other 
operations by the passive PET-PCL radar. 

6.4.1.3 Requirements for Jamming Signals 

The friendly jammer transmitter adaptivity should allow to simultaneously perform: 

• Jamming (matched bandwidth, high power, fast changes in signal parameters i.e., modulation, 
frequency hops). 

• Target impulse response separation (maximization of separation of target features-matching  
the jamming signal to the difference of target impulse responses). 

• ISAR imaging (high SNR, wide bandwidth, continuous waveform with long coherent processing 
interval). 

Summarizing, jamming signals from friendly jammers are used to obtain three different goals (jamming 
target’s onboard radar, feature separation, ISAR image formation) so each of them can put its’ own specific 
requirements. These differing objectives are: 

• Jamming: The jammer aims to improve the jamming signal-to-noise ratio. 

• Target impulse response: It is based on the Guerci’s book ‘Cognitive Radar: The Knowledge-Aided 
Fully Adaptive Approach’ [32] – optimum MIMO target Identification chapter. This approach 
assumes the usage of the method of stationary phase to create a constant modulus non-linear frequency 
modulation pulse for the chosen optimal signal assigned to the max eigenvalue of the matrix that  
is the difference between target transfer matrices. 

• ISAR: ISAR image resolution is an important factor that provides to resolve the scatterers in ISAR 
image. There are two types of ISAR resolutions, range and cross-range resolution. 
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6.4.1.4 ISAR Simulation Results 
Figure 6-11 shows different ISAR images that were formed by two types of signals – linear frequency 
modulated signal and noise signal with different values of bandwidth and coherent processing interval 
parameters. One can see that both signals can provide good ISAR images.  

6.4.1.5 Conclusions 
The aim of the utilization of the friendly jammer is to form a waveform that can simultaneously ensure three 
radar operations: jamming the target, ISAR imaging and classifications. It can be obtained by creating a 
waveform with time intervals that provide optimal (or even sufficient) conditions in each of the intervals. 

LFM Signal, 20MHz, 60ms CPI Noise Signal, 20MHz, 60ms CPI 

  

LFM Signal, 100MHz, 15ms CPI Noise Signal, 100MHz, 15ms CPI 

  
LFM Signal, 100MHz, 60ms CPI Noise Signal, 100MHz, 60ms CPI 

  

Figure 6-11: Example ISAR Images Depending on Signal Types and their Parameters. 
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Chapter 7 – ENABLING TECHNOLOGIES 

The architectures and techniques presented in this report, as well as the applications where their 
implementation is envisioned, will only receive their potential if a number of enabling technologies become 
available and continue to mature. Many of the techniques require sophisticated processing, large-scale 
optimization, and/or specialized hardware. Furthermore, some require precise waveform synthesis or 
beamforming, such that system calibration will be critical if benefits are to be achieved. In this section, we 
outline several critical enabling technologies that the task group sees as essential to the deployment and 
success of future cognitive radar systems. 

7.1 COMPUTING AND OPTIMIZATION 

At its foundation, cognitive radar involves assessing the current operational state of a sensor (progress 
relative to objectives, propagation and interference environment, etc.), representing this state in some 
manner, and then applying methods to determine how the sensor should perform its future operations. 
Therefore, at some level, every technique or approach presented in this report requires computation to make 
sense of the environment, and calculations or optimizations to determine how to proceed. 

As we know, radar systems produce tremendously large data sets that must be processed before the radar can 
make decisions related to its objectives, and in cognitive radar, we are asking the system to make decisions 
beyond the standard detections and parameter estimations required for detection and tracking. Cognitive 
radar techniques involve detailed spatial-spectral characterization [59], [148], [185], of the propagation 
environment in order to identify and to disrupt or avoid other sources; numerical representations of errors or 
uncertainty in order to optimize parameters such as pulse repetition frequency, center frequency, and/or 
modulation; biologically-inspired processing techniques [186] in support of intelligent decision-making or 
novel data collection modes; calculation of future expected rewards [69] in response to potential actions 
taken by the sensor; and many other examples of computationally intensive methods. Therefore, to 
implement cognitive radar techniques in practical systems, especially in real time, raw computing speed must 
continue to improve and processors must continue to become more tightly integrated via low latency 
connections to the Analog-to-Digital Converters (ADCs) and Digital-to-Analog Convertors (DACs) that 
collect and initiate the measurements. Fortunately, there are technologies such as the emerging RF 
System-on-Chip [187] (RFSoC – see more discussion below) where this tight integration is occurring 
alongside highly-agile RF front ends capable of operating over wide frequency ranges [188], [189]. 
Heterogeneous processor types (FPGAs, GPUs, and microprocessors) joined by high-speed interconnects 
can help ensure that processors best suited for specific types of calculations can be exploited while 
minimizing latency. 

Continued research into optimization theory and techniques is needed, especially with respect to large-scale 
optimization problems with high dimensionality. Better understanding of effective ways to reduce 
multi-dimensional, continuous search spaces to smaller, discrete searches is needed. New algorithms suitable 
for the optimization of radar parameters and radar resource allocation over large system models are 
necessary, including techniques that can provide near-optimal answers on the timeline of a typical radar 
processing interval. 

7.2 ONLINE WAVEFORM SYNTHESIS AND GENERATION 

Much of the recent cognitive radar trend can be traced back to the increased availability of arbitrary 
waveform generators powered by high-speed DACs. This availability inspired research into optimized 
waveforms [102], [104], [190] for tasks such as interference avoidance and target recognition, which was 
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then envisioned within a closed-loop process that could be considered cognitive. We expect optimized 
waveform design to continue as an important topic in cognitive radar, as evidenced by the emphasis on 
waveform design in Section 4: Techniques and Approaches. 

Continued advances in waveform design are necessary. MIMO waveform designs need continued 
improvement, and cognitive radar may create the need for MIMO designs with specific cross-correlation 
properties or features that exploit knowledge of target and interference parameters. MIMO waveform 
designs for multi-beam and multi-function operation with varying resolution and low cross-correlation will 
be useful for digital arrays that can adaptively transmit different waveforms from different sub-apertures. 
Furthermore, many cognitive techniques envision real-time waveform adaptation to optimize performance 
and/or avoid interference; therefore, corresponding algorithms must be able to optimize waveform properties 
and compute DAC samples that can be faithfully generated to produce the desired waveform. In order to 
adapt waveforms in real time, waveform synthesis must be fast, and the latency between processor and DAC 
must be very small. 

Waveform design techniques for cognitive radar also commonly produce waveforms with very specific 
properties that can be degraded by small errors in the physical creation of the waveform. For example, a 
waveform designed to have a specific range sidelobe null can be distorted by non-ideal DAC synthesis or by 
the power amplifier. In some cases, the benefits of precise waveform design will only be realized for highly 
calibrated hardware. In other cases, waveform pre-distortion [191] should be used to compute an 
intentionally distorted waveform that has the ideal properties once corrupted by the physical DAC and 
High-Power Amplifier (HPA). While waveform pre-distortion has been demonstrated to some extent, 
in-the-loop adaptive waveform design for cognitive radar requires pre-distortion to be applied in real time, 
which also requires exact characterization of the transmitting hardware.  

7.3 WIDEBAND AND TUNABLE FREQUENCY COMPONENTS 

One application of cognitive radar is to provide adequate performance in congested and contested spectrum 
environments, and spectrum agility and tunability are essential for that purpose. Spectrum agility implies the 
ability to tune the cognitive radar’s center frequency of operation and instantaneous bandwidth, while 
tunability refers to the system’s ability to shape its frequency response to match. For example, a switchable 
RF synthesizer can be used to change the frequency of the Local Oscillator (LO) used for up- and 
down-conversion, which changes the RF center frequency. Wideband mixers that can cover a wide range of 
frequencies on the LO and RF ports are widely available, resulting in significant frequency agility. However, 
the antenna operating range must also cover the full range of operation, and the radar receiver will be wide 
open to out-of-band interference unless front-end filters are matched to the system’s instantaneous frequency 
range. Filter banks could be used (switchable to a filter with suitable passband at any given time), but true 
frequency agility would require an enormous number of filters to cover GHz worth of operating range with 
varying instantaneous bandwidth. Therefore, continued improvement of tunable filters [192], amplifiers, and 
antennas [193], [194] will be essential to obtain frequency agility while maintaining power efficiency, low 
noise figure, and maximum immunity to out-of-band interference. These components must also cover wide 
operating frequency ranges, be capable of matching instantaneous bandwidth, have fast tuning, and must be 
compact and efficient themselves. Current designs are often slow to tune and may rely on tunable loads that 
reduce efficiency. 

7.4 MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 

Although early methods in cognitive radar have focused on maximizing metrics such as SNR and mutual 
information, many problems involve parameters and signals that are difficult and computationally 
intensive to represent by traditional statistical methods. In these cases, Machine Learning (ML) and other 
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Artificial Intelligence (AI) techniques (such as neural networks) will likely have a strong role to play 
[141], [195]. These techniques can be used to identify patterns and learn behaviors, which are essential 
knowledge for the decision-making (action cycle) aspect of cognitive radar. It has been proposed, for 
example, to use Machine Learning for spectrum characterization and awareness, or to use convolutional 
neural networks for signal identification. Therefore, it appears that these techniques will serve an 
important purpose for the higher levels of cognitive radar – not necessarily in detecting or tracking targets, 
but in characterizing the situation and suggesting actions to take. 

ML and AI require significant training data, which is always in short supply for radar applications. Each 
scenario that a radar faces provides a unique signal environment, geometry, set of targets, and other 
features; thus, it is imperative that techniques be able to incorporate both supervised learning from 
existing datasets and online real-time learning as new scenarios are presented. How to train, implement, 
and protect cognitive radars employing ML/AI is still an open question. Some have expressed concern 
that cognitive radars, especially those employing AI, could be tricked into learning bad habits; thus, it is 
imperative that ML/AI techniques for cognitive radar should have some bounds on the radar’s allowable 
behavior. Such bounds, however, could limit the potential impact of cognitive systems by restricting its 
ability to learn and adapt. 

For now, ML/AI algorithms take data as inputs and yield a decision based on that data. Typically, this 
decision is some type of detection or classification, which makes the accuracy of the decision (i.e., the 
performance of the algorithm) easy to define. In contrast, if ML/AI algorithms are used to output a course of 
action, additional modeling must be performed to assess whether the proposed course of action yields an 
improved performance. Furthermore, this modeling must be included in the training stage to provide 
feedback to the algorithm. Whereas the feedback in a traditional ML/AI application might be a simple 
correct/incorrect assessment, in a cognitive radar application the feedback must include a figure of merit on 
the proposed course of action. Therefore, additional research is needed in order to use ML/AI as a decision 
agent in cognitive radar’s closed-loop or perception-action cycle. 

7.5. ALL-DIGITAL RADAR ARRAYS 
All-digital arrays are defined as RF antenna arrays that possess the capability for independent waveform 
synthesis and analog-to-digital conversion at every element of the array [197], [198]. Such an 
architecture produces a huge amount of data and requires a significant amount of control, yet the 
potential agility and performance of an all-digital system is unmatched. The possibility for unique 
space-time waveform concepts, multiple transmit beams, and full digital beamforming on receive opens 
a wide design space for cognitive radar. 

Nearly any concept of arbitrary waveform combined with adaptive-transmit aperture allocation is 
possible. The aperture can be divided in sub-apertures, with each sub-aperture transmitting its own 
unique waveform in an independently defined direction. Such a mode is useful for tracking multiple 
targets that don’t require the sensitivity of the full aperture or for temporarily tasking a sub-aperture 
with performing a communication link. The aperture can also be divided into sub-apertures for MIMO 
operation [196] where the sub-apertures do not need to be the same size or shape. On receive, every 
element can receive the reflected signals due to all waveforms assuming the signals are within the 
instantaneous sampling bandwidth of the digitizers. Therefore, full-gain beams can be formed on 
receive even if the transmit beams were spoiled or low-gain due to using a fraction of the aperture. The 
cognitive, adaptive-transmit potential for digital arrays is nearly limitless.  

A few all-digital arrays are being developed and will become operational or available as testbeds in the 
near future [197], [198], [199]. Synchronization across elements, coherence of LO signals, and 
per-channel amplitude and phase mismatches can reduce performance unless carefully implemented. 
Distributing a common LO signal across the array maintains coherence but requires all elements to 
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operate within the same instantaneous band. On the other hand, independent LO signals allow the array 
to diversify its instantaneous operating frequency over the array but will likely reduce 
channel-to-channel coherence. Calibration algorithms for all-digital arrays are being researched and will 
be essential for achieving full performance. 

The exploitation of digital arrays is also highly dependent on the implementation of the system software. 
Software architecture decisions can make tasking the array easier but could restrict the flexibility of the array 
to perform in unique configurations. As cognitive radar algorithms that can exploit digital arrays become 
more prevalent, the software on these systems may need to adapt to allow more creative modes. Finally, 
processing the data from all-digital systems is a huge effort, as digital arrays can easily produce terabytes of 
data per second. Real-time cognitive radar on digital arrays will require immense processing power to 
analyze the data, understand the situation, design or select an operating mode, and then upload desired 
waveforms to the DAC on every element.  

7.6 RF SYSTEM-ON-CHIP (RFSOC) 

RF System-on-Chip (RFSoC) [187], [188], [189] is becoming more advanced as investment by the US 
Defense Advanced Research Projects Agency (DARPA), other government agencies, and industry rapidly 
increases. In the final year of this task group, Xilinx has released an RFSoC [186] that incorporates ADCs, 
DACs, and a powerful FPGA on the same chip. The ADCs operate at 4 Gigasamples/second while the DACs 
operate at 6.4 Gigasamples/second, thereby allowing Gigahertz of instantaneous bandwidth and direct 
sampling up to S-band. For example, the current version of the Xilinx Zynq UltraScale+ RFSoC contains up 
to 16 12-bit ADC channels, up to 16 14-bit DAC channels, an ARM processor, and Xilinx FPGA all on the 
same chip. Because of the tight on-chip integration between ADC, DAC, and the FPGA, high-latency 
communication between these devices is eliminated, creating a perfect platform for real-time exploitation of 
data, calculation of actions in the perception-action cycle, and loading of optimized waveforms into the 
DACs [200]. As these types of devices begin to incorporate improved synchronization and networking 
across chips, as well as integrated analog up- / down-conversion to increase their operating frequency range, 
their potential will increase even further. 

RFSoCs could enable real-time implementation of cognitive radar algorithms such as online waveform 
optimization (and loading to the DACs), spectrum characterization performed at the RF front end rather than 
back at a CPU, low latency research allocation, and even artificial intelligence algorithms that control the 
front-end operation. 

The key for this technology is the low latency between processor and ADCs/DACs. Other technologies 
may emerge that also provide this low latency, but currently RFSoCs seem to be the closest enabling 
hardware technology for implementation of truly real-time adaptive waveforms and transmit apertures. 
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Chapter 8 – CHALLENGES TO THE RESEARCH COMMUNITY 

The potential of cognitive approaches to enhance existing radar performance in almost all respects has led to 
an upsurge in research in recent years. There has been much progress in developing cognitive radars both 
theoretically and practically, however there remain many challenges: 

• On the one hand, in the field of research continuing the progress in development of cognitive radars 
(see Section 8.1). 

• On the other hand, in the fields of regulatory, industrial process and customer acceptance, legal 
(see Section 8.2). 

8.1 RESEARCH CHALLENGES 

8.1.1 Assessment and Evaluation 
A fundamental research challenge is how to assess and evaluate cognitive radar algorithms. 

Assessment of cognitive radar algorithms requires some characterization against which algorithms can be 
compared. The ontology in Horne et al., 2018 [201] provides some structure and terminology for 
characterizing cognitive processing algorithms according to levels or degrees of cognition. This will allow 
for some comparison of algorithms, but further work remains to develop tools and common terminology for 
describing and comparing the characteristics of cognitive radar algorithms. 

Evaluation of cognitive radar algorithm performance requires quantitative metrics. System performance will 
still be measured in terms of standard performance metrics such as probability of target detection and false 
alarm, mean square error in tracking systems, and probability of correct classification in automatic target 
recognition systems, but cognitive systems require additional metrics that quantify the cost of using system 
resources, or conversely the benefit of conserving system resources, as well as information theoretic 
surrogates such as mutual information and Bayesian information for performing the executive processor 
optimization. [70] provides some strategies for developing cost functions for executive processor 
optimization by combining performance and measurement metrics, but this remains more of an art than a 
science and will continue to be a major research challenge. 

8.1.2 The Research and Development Process and Experimentation 
The typical/classic Research and Development (R&D) process begins with theoretical development of 
concepts and algorithms and demonstration and evaluation of algorithm performance via simulation. 
Simulations give the developer complete control over the scenarios being examined and the statistical 
characteristics of the data generated. This allows for comprehensive studies of performance under benign 
and challenging conditions. However, simulations can never completely model the characteristics of real 
data obtained from actual sensors in the field. The next step is usually to evaluate performance against 
experimentally collected data sets. The experimental data provides more realistic challenges for the 
algorithms and allows for different algorithms to be evaluated fairly using the same data. Experimental 
collections, either in a laboratory setting or in the field, can be expensive in terms of time, resources, and 
monetary costs as compared to simulations and can never cover all of the possible scenarios (radar system 
settings and target/environmental conditions) that might be encountered in practice. The final step is to test 
algorithm performance in real time using sensors in the laboratory in the field. Field testing of course 
provides the ultimate test for an algorithm but is very challenging and expensive and reserved for only the 
most promising technologies. 
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Since cognitive radar algorithms adapt the radar sensor waveforms and settings as data is being collected, 
there are new challenges in the R&D process. The simulation and field testing stages are the same as for 
standard algorithm development and are critical first and last steps. With more sophisticated and 
incremental simulations, such as the digital twin concept [202], new development and qualification 
processes, including software-in-the-loop testing as soon as possible in the development cycle, can be 
developed. The digital twin, since it should get the same functional performances than the real system, 
is also an opportunity to contribute to the explicability of cognitive radar algorithms (see Section 8.2). 
Evaluation on pre-collected data sets is generally no longer possible since the radar settings must be 
fixed during the collection, except in limited cases where the data can be “oversampled” in some 
manner and then downselected after the fact to emulate cognitive radar selection of parameters. For 
example, in Ref. [64], the pulse-Doppler Software Defined Radar (SDR) collected data at a high Pulse 
Repetition Frequency (PRF). The cognitive algorithm determined the number of pulses and required 
PRF (up to the actual PRF) and then downsampled the pulses to get the correct number of pulses at the 
desired PRF. A similar process was used by Oechslin et al. [143], [144], [145]. This presents a unique 
challenge to the cognitive radar R&D process and makes experimental testing in a laboratory setting an 
important component of the cognitive algorithm development process. 

As of early 2015, the cognitive radar research had all been advancing concepts theoretically and 
examining their performance through simulation, or at best using pre-recorded data. There had been no 
reports of experimentally validated concepts, largely because the necessary hardware to test them had 
not been developed. However, this step is vital in order to establish the true performance potential of 
applying cognitive processing methods. In the last few years, cognitive radar testbeds have been 
developed at the Ohio State University (OSU) [146], Armasuisse [144], and FFI [203] and real-time 
experimental evaluations have been reported in Refs. [61], [146], [70], [203], [204]. Challenges in 
real-time experimentation involve repeatability of experiments, determining what is truth, determining 
metrics that can be obtained from the data and used for optimization, and timely computation  
(data processing and optimization).  

8.2 PRACTICAL CHALLENGES 

8.2.1 Requirements Definition 
A cognitive radar system balances radar system performance against sensing costs to determine the next 
set of sensing and processing actions. Articulating the system goals in a mathematical form suitable for 
optimization is thus critical to the operation of a cognitive radar system. There are two approaches to 
cognitive optimization: task-driven and information-driven [86]. In the task-driven approach, 
performance Quality of Service (QoS) requirements are specified, while in the information-driven 
approach, an information measure is optimized. 

QoS techniques have long been used in the context of radar resource management [69], [74], [75], [76], 
[77], [78], [79], [205]. They allow specification of multiple objectives in terms of tangible task 
requirements and/or mission requirements. However, this requires the system designer to be 
knowledgeable of the performance goals of the overall system. Furthermore, the QoS resource 
allocation problem is NP-hard, and requires the use of specialized algorithms to solve. 

The information theoretic approach replaces task-based metrics with information theoretic measures 
[80], [81], [82], [83], [84]. These measures allow the value of disparate tasks to be compared directly 
based upon the expected information gained by performing each task. However, the final values  
of information theoretic measures are difficult for the end-user to understand and attribute to specific 
operational goals [85]. Additionally, task-based methods do outperform information theoretic based 
approaches at their tasks of interest [86]. 
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A practical challenge for any cognitive radar system is determining the metric(s) to be used and the 
requirements for cognitive optimization with the customer and the end-user. Indeed since in some cases  
of cognitive radars involving algorithms such as machine learning taking into learning datasets,  
the performances of the radar system depend on the learning datasets and the way the cognitive radars will 
learn (in factory, in live trials, or in operation), new paradigm to define the requirements with the customer 
of the system should be studied (Quality of Service for military operation could be one option). 

8.2.2 Robustness 
An important factor in algorithm performance is robustness to modeling and computational errors. This topic 
has largely been ignored in the research to date but is beginning to be investigated [72], [206] and will be  
a significant challenge for future research. 

8.2.3 Implementation and Regulation 
In active radars, cognition requires waveforms and circuits to be reconfigurable and optimizable in real time. 
Initial progress has been made in the two separate fields [207] but a fully optimized solution that includes all 
the important aspects of radar circuitry has not yet been presented [208] even though some attempts to 
consider the radar as a holistic system (hardware-in-the-loop) have been presented, for instance,  
in Jabosky et al., 2012 [209].  

The dynamic reconfiguration of the spectrum portion to be used for transmitting, as described in previous 
sections, is not always easily implementable. The main reason is that quite often, due to the non-linear 
operational regime of the high-power radar RF circuitry (particularly for vacuum tube amplifiers), there is a 
non-negligible spectral spreading outside the assigned radar band (spectral regrowth). This makes 
coexistence of communications and radar systems in close bands with narrow guard bands difficult [183]. 
Magnetron tubes, quite often used in legacy radar systems because they are inexpensive, have serious 
drawbacks in term of spectral purity. To reduce the Out-Of-Band (OOB) emissions, bandpass filters  
are often used, though the cost of this improvement in spectral purity means a significant loss in the effective 
transmitted power.  

Solid-state-based amplifiers are much easier to control in terms of OOB, but unfortunately, they cannot 
provide the high peak power of tubes and, anyway, they represent only a small minority of current 
operational systems. 

Of course, the frequency use and emissions by radars and other transmitting devices are all regulated. Many 
countries, but not all, adopt the ITU emission standard [210]. Figure 8-1 shows a typical emission mask that 
might be applied to radar systems.  

There is a band over which the radar is designed to transmit. It is fixed in frequency and goes down -40 dB 
from the peak. Outside, at lower power levels, OOB emissions are permitted with, generally, a roll-off  
of -20 dB/decade (-40 dB/decade is under consideration). The radar transmissions should not exceed the 
limits imposed by the mask, but unfortunately unwanted emissions, due to nonlinearity in the transmitter and 
to the steep rise and fall times of the radar pulses, often occur [184]. 

An intermediate step toward arbitrary waveform generation is selection of waveforms or waveform 
parameters from a pre-specified set. Many modern radars already have this capability and a first step toward 
making cognitive radars a reality could be implementing cognitive processing to choose among the set  
of allowable waveforms [212]. 

In passive multisensory radar systems, the cost must be kept low, because this is one of the main reasons that 
justify their use, despite their poorer performance compared to active systems. Cognitive algorithms 
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implemented on passive systems should then be easy to implement, and not be very demanding in terms of 
energy and memory usage. Fortunately, the rapid increase in the performance of DSPs, FPGAs and ASICs 
have made the signal processing more compact and low power [213]. 

 

Figure 8-1: Graph of a Generic ITU Spectral Mask, Showing the Required Suppressions 
Relative to Power at Fundamental (dB) [211]. 

8.2.4 Legal Issues 
Among other things, legal issues are linked to the requirement definitions that determine the responsibility of 
the system, especially when human safety is concerned such as for autonomous vehicles or AI applications 
in medicine and so far for defence systems. The confidence of the customer and end-user in the cognitive 
system is therefore mandatory. This confidence can help to define who, between the customer and  
the provider-industrial, is responsible in case of any accident due to the failure of the cognitive systems. 

There are several ways to acquire this confidence, such as the digital twin of the cognitive system for a first 
step of comprehension of the system. But this digital twin may not be sufficient in some cases (different 
environment, different learning datasets, or intentionally corrupted datasets). Moreover, the customer needs 
to have confidence in the learning datasets as well (linked to the question of the qualification/certification of  
the learning datasets). 

Currently, there is much research underway concerning AI explainability. This research attempts to outline 
some rules that can assist the legal aspect [214], [215], [216]. 

In the meantime, depending on the country, some rules/laws are beginning to emerge for autonomous 
vehicles. These rules take advantage of and return to experience gained from the use of the product 
prototypes. (Regional definitions of the different autonomous levels of a car may vary). 
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Finally, it will probably take a long time before every law, and sharing of responsibility will be determined 
in each country and region, especially in the context of personal safety and sometimes in the context of 
ethics. AI that assists people to choose their next holiday is definitely different from AI applications for 
medicine or defence purposes! 
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Chapter 9 – CONCLUSIONS AND RECOMMENDATIONS 

9.1 SUMMARY AND CONCLUSIONS 

Cognition has now become an established subject in modern radar systems and signal processing. Despite 
the level of interest, there has not been clear consensus on the exact definition, nor on the utility and benefit 
that cognitive processing may provide to military sensing systems. Furthermore, at the outset of this study 
there had been little or no experimental work to demonstrate cognitive behaviour in a practical way. This 
study has provided a significant step in addressing both of those issues. 

This work has reviewed the different concepts and definitions in the literature and highlighted that a true 
cognitive system should incorporate learning, so that faced with a dynamically changing target scene it will 
do better a second time. Nevertheless, some workers argue that the term ‘fully adaptive radar’ is more 
appropriate, since ‘cognitive radar’ almost promises too much. 

The bulk of the work of the report has been to explore the benefits (and drawbacks) of cognitive processing 
in a variety of experiments and simulations. The experimental work, in particular, represents some of the first 
of its kind, and demonstrates true cognitive behaviour. The ability to have several groups working 
co-operatively, sharing experimental configurations and results, has been of great benefit. However, the 
work has also highlighted the difficulty of experimental work on cognitive sensing, and there is much more 
to be done. 

9.2 RECOMMENDATIONS 

The experimental work of the Task Group will undoubtedly continue beyond the time limit of this Task 
Group, since strong links have been forged. It is recommended that a further NATO Task Group be initiated 
to focus on a number of key topics that were identified as important future activities during this Task Group. 

The first topic is the role of machine learning techniques in cognitive radar. Although a lot of work is 
currently underway on machine learning for processing sensor data, the deployment of machine learning 
techniques in closed-loop cognitive radars and the respective military operational consequences are not well 
understood. 

A second topic is Cognitive Radar Networks. The radars of the future are likely to be distributed, intelligent 
and spectrally-efficient, so the extension of cognitive techniques to distributed sensing is a natural way 
forward. However, the means of resource management of a distributed network of this kind still need to be 
fully understood and developed. 

Finally, it is also recommended that a follow on activity continues to provide a platform for performing 
international collaborative experimental work on cognitive radar systems. 
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